
1

Purple Pi R1系统使用说明

接口说明

SD Card

USB

MIC

耳机

TP

LCD

PWM

以太网

RTC

wifi

STA模式

AP模式

双排针

SPI

I2C

GPIO

SSH

NFS

开机自启

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

2

深圳触觉智能科技有限公司

www.industio.cn

开发板已经默认加载了SD卡驱动，插上SD卡后，在系统中会出现节点/dev/mmcblk1p1（如有多个分

区，则会出现多个/dev/mmcblk1p*），开发板的SD卡对应接口位于J4。

插入SD卡后，系统会默认把SD卡，挂载到/sdcard目录下。

将SD卡插入卡槽中，系统会提示以下信息：

接口说明

SD Card

Purple Pi R1

系统使用说明

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

http://www.industio.cn/

3

弹出SD卡，系统有如下提示：

输入 df -h ，可查看SD卡挂载路径和挂载信息，默认挂载路径为“/sdcard”。

测试SD卡的读写速度

开发板USB对外接口为J5，如下图所示：

插入U盘后，系统会默认把U盘，挂载到/udisk目录下

插入U盘，系统会提示以下信息：

USB

time dd if=/dev/zero of=/sdcard/test bs=1k count=10240 conv=fsync
time dd if=/sdcard/test of=/dev/null bs=1k count=10240

1
2

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

4

拔出U盘，系统有如下提示：

输入df -h，可查看U盘挂载路径和挂载信息，默认挂载路径为“/udisk”。

测试U盘的读写速度

模块用的是AMIC，我们可用测试demo：audio_all_test_case进行测试，(此程序在发布包的

sdk\verify\mi_demo\geonosis\audio_all_test_case)

MIC

time dd if=/dev/zero of=/udisk/test bs=1k count=10240 conv=fsync
time dd if=/udisk/test of=/dev/null bs=1k count=10240

1
2

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

5

录音指令如下：

Amic 单声道 采样率8K，录音30秒，保存路径为/tmp，音量参数为15，采样率为8000。

播放指令如下：

-t: 程序的运行时间（秒数），不指定则会一直运行
-I: 使能AI
-o: AI录音的输出路径
-d: AI的设备ID(Amic[0] Dmic[1] I2S RX[2] Linein[3])
-c: AI通道数
-v: AI音量参数(Amic 0~21, Dmic 0~4, Linein 0~7)
-s: AI采样率8000/16000/32000/48000
-q: 是否使用AI queue mode
-h: 使能AI Hpf
-g: 使能AI Agc
-e: 使能AI Eq
-n: 使能AI NR
-r: AI 重采样采样率8000/16000/32000/48000
-a: AI 编码类型g711a/g711u/g726_16/g726_24/g726_32/g726_40
-A: 使能AED
-b: 使能AEC
-O: 使能AO
-i: AO播放的输入文件路径
-D: AO设备ID(Lineout[0] I2S TX[1] HDMI[2])
-V: AO音量参数(-60~30)
-h: 使能AO Hpf
-g: 使能AO Agc
-e: 使能AO Eq
-n: 使能AO NR
-r: AO 重采样采样率8000/16000/32000/48000

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

prog_audio_all_test_case使用说明: Plain Text 复制代码

#prog_audio_all_test_case -t 20 -I -o /tmp -d 0 -c 2 -v 15 -s 8000 1

Plain Text 复制代码

 #prog_audio_all_test_case -t 10 -O -i /tmp/Chn0_Amic_8K_16bit_MONO.wav -
D 0 -V 3

1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

6

Lineout播放测试demo同MIC一样：audio_all_test_case

Lineout播放/media/pizzicato.wav

note：Only support wav file.

我们已经配置好tslib，可以直接使用它生成的工具。

TP测试方法如下：

初始化屏幕：

执行测试demo：

可看到以下界面，我们可以在demo中执行划线操作，验证tp是否触摸正常。

耳机

TP

#prog_audio_all_test_case -t 10 -O -i /media/pizzicato.wav -D 0 -V 31

Plain Text 复制代码

cd /customer
./disp_init &

1
2

Plain Text 复制代码

 #ts_test_mt 1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

7

注意：使用ts_test_需mt要执行disp_init来初始化屏，用logo会出现花屏

我们也可以通过测试程序tp_test进行测试：

tp_test.c测试源码：

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

8

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <linux/input.h>

static int event0_fd = -1;
struct input_event ev0;

static int handle_event0()
{
 int rd;

 rd = read(event0_fd, &ev0, sizeof(struct input_event));
 if(rd < sizeof(struct input_event)){
 return 0;
 }

 if(EV_ABS == ev0.type){
 if (ev0.code == ABS_X){
 printf("ABS_X:");
 }else if (ev0.code == ABS_Y){
 printf("ABS_Y:");
 }else if (ev0.code == ABS_PRESSURE){
 printf("ABS_PRESSURE:");
 }else{
 printf("UNKNOWEN:");
 }
 printf("value:%d\n", ev0.value);
 }

 return 1;
}

int main(void)
{
 int done = 1;

 event0_fd = open("/dev/input/event0", O_RDONLY);
 if(event0_fd <0) {
 printf("open input device error\n");
 return -1;
 }
 while (done){

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

tp_test.c Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

9

编译： arm-linux-gnueabihf-gcc tp_test.c -o tp_test

将TP测试源码拷贝到Ubuntu中，编译生成tp_test，然后通过U盘拷贝至开发板。

执行tp_test测试：/udisk/tp_test

在Purple Pi上的LCD接口默认是RGB565的，需外接LCD显示屏的转接板,这里适配一块7寸1024x600

分辨率的MIPI屏。

屏幕资料：

我们可以通过logo来显示图片测试屏幕是否显示正常。

找一张1024x600分辨率JPG格式的图片，并重命名为logo.jpg。

将logo.jpg 和 logo 放在同一目录下。

输入以下指令：

LCD

 done = handle_event0();
 }

 if(event0_fd > 0){
 close(event0_fd);
 event0_fd = -1;
 }
 return 0;
}

46
47
48
49
50
51
52
53
54

📎IDO-EXB2D06-V1-SCH.pdf

📎2D06-7寸屏资料.zip深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

https://industio.yuque.com/attachments/yuque/0/2023/pdf/12884885/1673491949520-42de26c6-8bfa-4992-96f9-45d6af9aa1b5.pdf?from=https%3A%2F%2Findustio.yuque.com%2F__workers%2Findustio%2Fgyzv1h%2Fhyg3cof1hhv915ka%2Fpdf%3Fkey%3Dexports%253Apdf%253Adoc%253A111676456%253A1688711309000-ed2e9076%26export_type%3Dpdf%26copyright_watermark%3D%26image_copyright_watermark%3D%26x-yuque-fc-token%3DAdOy5rJgzIIc5oSoLJQn9A%253D%253D%257CxfUEsdhaiHnwA7V-aUWsewreTrMHDWxgDggCFTwWRDg%253D
https://industio.yuque.com/attachments/yuque/0/2023/zip/12884885/1673491949708-7b4a2579-ce66-45c1-a5c0-1f32cbb4c3e6.zip?from=https%3A%2F%2Findustio.yuque.com%2F__workers%2Findustio%2Fgyzv1h%2Fhyg3cof1hhv915ka%2Fpdf%3Fkey%3Dexports%253Apdf%253Adoc%253A111676456%253A1688711309000-ed2e9076%26export_type%3Dpdf%26copyright_watermark%3D%26image_copyright_watermark%3D%26x-yuque-fc-token%3DAdOy5rJgzIIc5oSoLJQn9A%253D%253D%257CxfUEsdhaiHnwA7V-aUWsewreTrMHDWxgDggCFTwWRDg%253D

10

我们可以看到图片正常显示了。

#./logo logo.jpg &1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

11

LCD屏使用GPIO4作为背光控制，默认配置为pwm0。

测试方法：

可以看到屏幕的背光根据参数的改变而变化。

使用infinity2m-spinand-ssc011a-s01a-rgb565-rmii.dts，根据原理图，ETH1使用PAD_TTL16-

PAD_TTL23、PAD_GPIO0和PAD_GPIO1：

PWM

以太网

#echo 0 > /sys/class/pwm/pwmchip0/export
#echo 2000 > /sys/class/pwm/pwmchip0/pwm0/period
#echo 25 > /sys/class/pwm/pwmchip0/pwm0/duty_cycle
#echo 1 > /sys/class/pwm/pwmchip0/pwm0/enable
#echo 100 > /sys/class/pwm/pwmchip0/pwm0/duty_cycle

1
2
3
4
5

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

12

结合SSD201 HW Checklist V6.xlsx，ETH1的MODE为4：

其他默认配置即可。

测试

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

13

以eth0为例，在网口接口插上网线（另一端连接路由器），执行以下命令可对网口进行操作。

1、接上网线，dhcpcd自动获取IP地址。

尝试ping外网

确认可以ping通

其它以太网的配置可以参考余下几点。

2、查看eth0 网卡

ping www.baidu.com1

Plain Text 复制代码

ifconfig eth0 1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

14

3、关闭和开启网卡

4、设置静态IP地址

5、设置MAC地址

6、设置子网掩码

7、设置广播地址

8、网关添加和删除

 #ifconfig eth0 up
 #ifconfig eth0 down

1
2

Plain Text 复制代码

ifconfig eth0 192.168.0.231

Plain Text 复制代码

#ifconfig eth0 hw ether 36:72:C3:0A:FE:B31

Plain Text 复制代码

ifconfig eth0 netmask 255.255.255.01

Plain Text 复制代码

ifconfig eth0 broadcast 192.168.0.2551

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

15

9、设置DNS

添加和修改DNS，需要修改“/etc/resolv.conf”文件。

例：给开发板添加DNS “114.114.114.114”，操作方法如下所示

在文件最后添加一行nameserver 114.114.114.114

10、手动动态获取IP地址

11、配置静态IP

修改“/etc/network/interfaces”文件

添加内容，设置eth0为静态IP，地址为192.168.0.19

route add default gw 192.168.0.1
route del default gw 192.168.0.1

1
2

Plain Text 复制代码

vi /etc/resolv.conf1

Plain Text 复制代码

Generated by dhcpcd from eth0.dhcp
/etc/resolv.conf.head can replace this line
domain lan
nameserver 114.114.114.114

/etc/resolv.conf.tail can replace this linea

1
2
3
4
5
6

Plain Text 复制代码

3 udhcpc -i eth01

Plain Text 复制代码

3 vi /etc/network/interfaces1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

16

开启网卡服务

系统起来后，将看到/dev/rtc0设备节点

RTC

#auto eth0
#iface eth0 inet static
#address 192.168.0.19
#netmask 255.255.255.0
#gateway 192.168.0.1

1
2
3
4
5

Plain Text 复制代码

#/etc/init.d/S40network restart1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

17

验证

读取RTC时间：

设置RTC时间：

写入RTC时间

装上RTC电池，然后把开发板电源断开，并等待一段时间再接通电源，可以看到RTC在断电这段时间内

是继续计时的。

hwclock -r1

Plain Text 复制代码

date -s "2021-03-03 00:00:00"
hwclock -w
hwclock -s

1
2
3

Plain Text 复制代码

hwclock -w1

Plain Text 复制代码

hwclock -r1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

18

至此，内部RTC调试完成。

wifi是USB接口的（USB1）,系统启动后，通过lsusb可以看到1b20:8888的设备，它便是wifi模块。

我们也可由此判断模块是否正常加载。

加载驱动

执行config/wifi/ssw01bInit_purple_pi.sh会自动加载驱动：

驱动加载完后，我们便能看到wlan0网卡了：

wifi

STA模式

/config/wifi/ssw01bInit_purple_pi.sh1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

19

前面已经使用/config/wifi/ssw01bInit.sh加载了模块驱动，并且wlan0网卡已存在。现在我们通过

wpa_supplicant工具（在/config/wifi目录下）来连接wifi热点。

修改/appconfigs/wpa_supplicant.conf，填入wifi热点信息：

当然，在连接之前先看看能否搜索到这个热点：

可以看到已经搜索到这个热点，接下来尝试连接：

vi /appconfigs/wpa_supplicant.conf1

Plain Text 复制代码

/config/wifi/iwlist wlan0 scan1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

20

提示没有相关库，这些库位于/config/wifi/目录下，我们配置一下LD_LIBRARY_PATH。

看起来是连接上了，但ifconfig发现没有分配到IP，这是因为没有dhcp服务：

这里我先手动给它设置一个IP，并测试是否能否和同一路由器下的设备通信：

/config/wifi/wpa_supplicant -D nl80211 -i wlan0 -c /appconfigs/wpa_suppli
cant.conf -B &

1

Plain Text 复制代码

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/config/wifi
 /config/wifi/wpa_supplicant -D nl80211 -i wlan0 -c /appconfigs/wpa_supplic
ant.conf -B &

1
2

3

Plain Text 复制代码

ifconfig wlan0 192.168.1.134
ping 192.168.1.166

1
2

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

21

可以看到能够正常通信，接下来给它设置DNS和网关，然后测试能否上网：

好的，现在可以上网了。为了让它在连接热点时自动获取IP、DNS及网关，我们需要添加dhcp服务，当

然，这个服务可以从buildroot获得：

route add default gw 192.168.1.1
echo nameserver 114.114.114.114 > /etc/resolv.conf
ping www.baidu.com

1
2
3

Plain Text 复制代码

industio@industio$: cd buildroot-2020.05/
industio@industio$: ARCH=arm make menuconfig

1
2

Plain Text 复制代码深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

22

这里我们默认配置好了，可以直接使用。系统启动后，可以看到dhcp服务已经开启了：

接下来，开始wifi连接：

可以看到dhcp服务已经正常工作了。

/config/wifi/ssw01bInit.sh
ifconfig wlan0 up
vi /appconfigs/wpa_supplicant.conf
/config/wifi/wpa_supplicant -D nl80211 -i wlan0 -c /appconfigs/wpa_suppli
cant.conf -B &
ifconfig wlan0
route
cat /etc/resolv.conf
ping www.baidu.com

1
2
3
4

5
6
7
8

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

23

首先需要配置kernel config：

每次修改配置后，更新一下defconfig：

系统起来后，首先加载wifi驱动：

AP模式

industio@industio$:cd kernel
industio@industio$:ARCH=arm make menuconfig

1
2

Plain Text 复制代码

industio@industio$: cp .config ./arch/arm/configs/infinity2m_spinand_ssc011
a_s01a_minigui_double_net_defconfig -f

1

Plain Text 复制代码

/config/wifi/ssw01bInit.sh
ifconfig wlan0 up

1
2

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

24

当然，我们的WIFI模块作为AP热点，需要配置一下热点信息：

接下来，打开AP热点：

此时，在手机/电脑上就可以搜索到我们的AP热点了：

vi /config/wifi/hostapd.conf1

Plain Text 复制代码

/config/wifi/hostapd -B /config/wifi/hostapd.conf 1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

25

尝试连接，发现一直在连接但并没有连接成功，这是因为没有开启DHCP服务，没有给连接设备分配到

IP导致连接失败，所以我们还需要开启DHCP服务（使用dnsmasq工具）：

关注dhcp-range，它表示给配给设备的IP范围：

关注interface，这里把它设置为wlan0：

由于dhcp-range设置为192.168.1.x，因此wlan0的静态IP设置为192.168.0.1：

此时，设备可以正常连接了，并且分配的IP位于dhcp-range范围内：

vi /config/wifi/dnsmasq.conf1

Plain Text 复制代码

ifconfig wlan0 192.168.0.11

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

26

现在设备可以正常连接热点了，但此时我想连接设备能够上网，即把板子当作一个路由器，把eth0当作

WAN，把wlan0当作LAN。

首先需要确认eth0是可以上网的：

通过brctl桥接工具可以实现，此工具默认是没有安装的，和之前一样，从buildroot获取：

ping www.baidu.com -I eth01

Plain Text 复制代码

industio@industio$: cd buildroot-2020.05/
industio@industio$: ARCH=arm make menuconfig

1
2

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

27

重新编译并更新固件：

更新固件后，前面的加载驱动、hostapd服务和dnsmasq服务需要重新执行，然后执行以下命令建立桥

接：

此时，连接设备就可以正常上网了：

双排针接口说明列表

双排针

industio@industio$: cp .config ./configs/ssd20x_defconfig -f
industio@industio$: make BR2_JLEVEL=4
industio@industio$: cd ../project/image/rootfs
industio@industio$: rm rootfs/* -rf
industio@industio$: cp ../../../buildroot-2020.05/output/images/rootfs.tar
./ -f
industio@industio$: tar -xvf rootfs.tar -C ./rootfs/
industio@industio$: tar -cvf rootfs.tar.gz ./rootfs
industio@industio$: cd ../../../

1
2
3
4
5

6
7
8

Plain Text 复制代码

industio@industio$: ./Release_to_customer.sh -f nand -p ssd202 -m 2561

Plain Text 复制代码

brctl addbr br0
brctl addif br0 wlan0
brctl addif br0 eth0
ifconfig br0 up

1
2
3
4

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

28

序

号

丝印
 默认模

式/功能

节点
 序

号

丝印
 默认模式/

功能

节点

1
 3V3
 2
 VCC5V

3
 I2C0_S

DA
 IIC-0
 /dev/i2c-0

4
 VCC5V

5
 I2C0_S

CL

6
 GND

7
 GPIO13
 /sys/class/gpio

/gpio13

（默认作为TP 中

断）

8
 NC

9
 GND
 10
 NC

11
 GPIO12
 /sys/class/gpio

/gpio12

（默认作为TP 复

位）

12
 NC

13
 GPIO47
 /sys/class/gpio

/gpio47

14
 GND

15
 GPIO48
 /sys/class/gpio

/gpio48

16
 GPIO50
 /sys/class/gpio

/gpio50

17
 3V3
 18
 GPIO49
 /sys/class/gpio

/gpio49

19
 SPI0_D

O
 spi0
 /dev/spidev0.0

20
 GND

21
 SPI0_DI
 22
 NC

23
 SPI0_C

K

24
 SPI0_CZ
 spi0
 /dev/spidev0.0

25
 GNG
 26
 GPIO5
 /sys/class/gpio

/gpio5

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

29

接口定义列表：

SPI

27
 NC
 28
 NC

29
 GPIO16
 /sys/class/gpio

/gpio16

30
 GND

31
 GPIO15
 /sys/class/gpio

/gpio15

32
 GPIO73
 /sys/class/gpio

/gpio47

33
 GPIO17
 /sys/class/gpio

/gpio17

34
 GND

35
 GPIO18
 /sys/class/gpio

/gpio18

36
 GPIO87
 /sys/class/gpio

/gpio87

37
 GPIO59
 /sys/class/gpio

/gpio59

38
 GPIO88
 /sys/class/gpio

/gpio88

39
 GND
 40
 GPIO89
 /sys/class/gpio

/gpio89

GPIO8
 SPI0_CZ

GPIO9
 SPI0_CK

GPIO10
 SPI0_DI

GPIO11
 SPI0_DO

接口
 节点

SPI0
 /dev/spidev0.0

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

30

开发板默认配置好了SPI。我们可以通过回环测试，确定SPI是否能正常使用。

查看是否有spi节点生成：

可以看到spi节点已经出来了。

使用跳线帽短接GPIO10–GPIO11（短接MISO和MOSI）进行回环测试。

测试源码：

ls /dev/spi*1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

31

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <stdint.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <strings.h>
#include <string.h>
#include "../../project/kbuild/4.9.84/i2m/include/uapi/linux/spi/spidev.
h"

static const char *device = "/dev/spidev0.0";
static uint8_t mode = 0; /* SPI 通信使用全双工，设置 CPOL＝0，CPHA＝0。 */
static uint8_t bits = 8; /* ８ｂiｔｓ读写，MSB first。*/
static uint32_t speed = 12*1000*1000;/* 设置传输速度 */
static uint16_t delay = 0;
static int g_SPI_Fd = 0;

#define SPI_DEBUG 1

static void pabort(const char *s)
{
 perror(s);
 abort();
}

int SPI_Transfer(const uint8_t *TxBuf, uint8_t *RxBuf, int len)
{
 int ret;
 int fd = g_SPI_Fd;
 struct spi_ioc_transfer tr ={
 .tx_buf = (unsigned long) TxBuf,
 .rx_buf = (unsigned long) RxBuf,
 .len =len,
 .delay_usecs = delay,
 };
 ret = ioctl(fd, SPI_IOC_MESSAGE(1), &tr);
 if (ret < 1)
 perror("can't send spi message\n");
 else
 {
#if SPI_DEBUG

1
2
3
4
5
6
7
8
9
10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

spi_test.c Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

32

 int i;
 printf("nsend spi message Succeed\n");
 printf("nSPI Send [Len:%d]: \n", len);
 for (i = 0; i < len; i++)
 {
 if (i % 8 == 0)
 printf("nt\n");
 printf("0x%02X \n", TxBuf[i]);
 }
 printf("n");
 printf("SPI Receive [len:%d]:\n", len);
 for (i = 0; i < len; i++)
 {
 if (i % 8 == 0)
 printf("nt\n");
 printf("0x%02X \n", RxBuf[i]);
 }
#endif
 }
 return ret;
}

int SPI_Write(uint8_t *TxBuf, int len)
{
 int ret;
 int fd = g_SPI_Fd;
 ret = write(fd, TxBuf, len);
 if (ret < 0)
 perror("SPI Write error\n");
 else
 {
#if SPI_DEBUG
 int i;
 printf("SPI Write [Len:%d]: \n", len);
 for (i = 0; i < len; i++)
 {
 if (i % 8 == 0)
 printf("\n\t");
 printf("0x%02X \n", TxBuf[i]);
 }
 printf("\n");
#endif
 }
 return ret;
}

int SPI_Read(uint8_t *RxBuf, int len)
{

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

33

 int ret;
 int fd = g_SPI_Fd;
 ret = read(fd, RxBuf, len);
 if (ret < 0)
 printf("SPI Read error\n");
 else
 {
#if SPI_DEBUG
 int i;
 printf("SPI Read [len:%d]:\n", len);
 for (i = 0; i < len; i++)
 {
 if (i % 8 == 0)
 printf("\n\t");
 printf("0x%02X \n", RxBuf[i]);
 }
 printf("\n");
#endif
 }
 return ret;
}

int SPI_Open(void)
{
 int fd;
 int ret = 0;
 if (g_SPI_Fd != 0) /* 设备已打开 */
 return 0xF1;
 fd = open(device, O_RDWR);
 if (fd < 0)
 pabort("can't open device\n");
 else
 printf("SPI - Open Succeed. Start Init SPI...\n");
 g_SPI_Fd = fd;

 ret = ioctl(fd, SPI_IOC_WR_MODE, &mode);
 if (ret == -1)
 pabort("can't set spi mode\n");
 ret = ioctl(fd, SPI_IOC_RD_MODE, &mode);
 if (ret == -1)
 pabort("can't get spi mode\n");
 /*
 * bits per word
 */
 ret = ioctl(fd, SPI_IOC_WR_BITS_PER_WORD, &bits);
 if (ret == -1)
 pabort("can't set bits per word\n");
 ret = ioctl(fd, SPI_IOC_RD_BITS_PER_WORD, &bits);

93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

34

 if (ret == -1)
 pabort("can't get bits per word\n");
 /*
 * max speed hz
 */
 ret = ioctl(fd, SPI_IOC_WR_MAX_SPEED_HZ, &speed);
 if (ret == -1)
 pabort("can't set max speed hz\n");
 ret = ioctl(fd, SPI_IOC_RD_MAX_SPEED_HZ, &speed);
 if (ret == -1)
 pabort("can't get max speed hz\n");
 printf("spi mode: %d\n", mode);
 printf("bits per word: %d\n", bits);
 printf("max speed: %d KHz (%d MHz)\n", speed / 1000, speed / 1000 / 1
000);
 return ret;
}

int SPI_Close(void)
{
 int fd = g_SPI_Fd;
 if (fd == 0) /* SPI 是否已经打开*/
 return 0;
 close(fd);
 g_SPI_Fd = 0;
 return 0;
}

int SPI_LookBackTest(void)
{
 int ret, i;
 const int BufSize = 16;
 uint8_t tx[BufSize], rx[BufSize];
 bzero(rx, sizeof(rx));
 for (i = 0; i < BufSize; i++)
 tx[i] = i;
 printf("nSPI - LookBack Mode Test...\n");
 ret = SPI_Transfer(tx, rx, BufSize);
 if (ret > 1)
 {
 ret = memcmp(tx, rx, BufSize);
 if (ret != 0)
 {
 printf("tx:\n");
 for (i = 0; i < BufSize; i++)
 {
 printf("%d ", tx[i]);
 }

141
142
143
144
145
146
147
148
149
150
151
152
153
154

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

35

将源码拷贝到Ubuntu虚拟机，下进行编译，生成执行文件spi_test。

将执行文件spi_test拷贝到开发板执行。

 printf("\n");
 printf("rx:\n");
 for (i = 0; i < BufSize; i++)
 {
 printf("%d ", rx[i]);
 }
 printf("\n");

188
189
190
191
192
193
194
195

industio@industio$:arm-linux-gnueabihf-gcc spi_test.c -o spi_test -lpthread1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

36

I2C接口定义与节点列表：

I2C测试需要外接I2C设备，这里我们以TP为例，通过i2cdetect进行测试。

开发板中输入：

通过设备号确认识别i2c设备：

I2C

接口
 节点
 备注

i2c0
 /dev/i2c-0
 gpio6、gpio7

i2c1
 /dev/i2c-1
 gpio2、gpio3

IO
 配置
 备注

GPIO6
 I2C0_SCL

GPIO7
 I2C0_SDA

GPIO2
 I2C1_SCL
 目前用于屏幕TP使用

GPIO3
 I2C1_SDA

#i2cdetect -r -y 1 >> i2c.log1

Plain Text 复制代码

#cat i2c.log 1

Plain Text 复制代码深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

37

可以看到识别到了TP，TP的设备地址：0x5d。

可通过以下命令控制GPIO,例如GPIO14:

申请gpio：

设置为输出：

设置为输入：

输出高电平：

输出低电平：

获取输入电平（0：低电平，1：高电平）

GPIO

#echo 14 > /sys/class/gpio/export1

Plain Text 复制代码

#echo out > /sys/class/gpio/gpio14/direction1

Plain Text 复制代码

#echo in > /sys/class/gpio/gpio14/direction1

Plain Text 复制代码

#echo 1 > /sys/class/gpio/gpio14/value1

Plain Text 复制代码

#echo 0 > /sys/class/gpio/gpio14/value1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

38

在buildroot中已经默认配置了SSH，不需要重新配置，可以直接使用，使用前需要知道开发板的IP地址

打开软件（putty,secureCRT，CMD等），账户名：root，密码：123456

SSH

#cat /sys/class/gpio/gpio14/value1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

39

在Ubuntu虚拟机下安装NFS服务

Ubuntu虚拟机下准备NFS文件系统（如果不是使用提供的Ubuntu镜像，需要把源码复制到自己的

Ubuntu虚拟机上）

NFS

industio@industio$:sudo apt-get install nfs-kernel-server1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

40

在Ubuntu虚拟机开启NFS服务

如果上面的步骤没有问题，接下来重启nfs服务

NFS服务重启成功

本地验证

industio@industio$:cd ~/ssd20x
industio@industio$:mkdir nfs
industio@industio$:cd nfs
industio@industio$:cp ../project/image/output/rootfs/* ./ -rf
industio@industio$:cp ../project/image/output/customer/ ./ -rf
industio@industio$:cp ../project/image/output/appconfigs/ ./ -rf
industio@industio$:cp ../project/image/output/miservice/config/ ./ -rf

1
2
3
4
5
6
7

Plain Text 复制代码

industio@industio$:sudo vi /etc/exports
//如果提示没有文档，请查看nfs服务是否安装。进入文件在后面添加以下内容
/home/industio/ssd20x/nfs *(rw,sync)

1
2
3
4

Plain Text 复制代码

industio@industio$:sudo /etc/init.d/nfs-kernel-server restart1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

41

开发板挂载NFS

确认开发板与Ubuntu虚拟机处于同一局域网内，并且能互相通信。

Ubuntu虚拟机的IP地址如下：

开发板ping Ubuntu虚拟机的IP正常通信

//使用ifconfig查看Ubuntu IP地址，Ubuntu IP地址为192.168.0.17
industio@industio$:sudo mount -t nfs -o nolock 192.168.0.17:/home/industio/
ssd20x/nfs/ /mnt
//挂载成功查看目录是否与之前准备的文件系统一样
industio@industio$:ls /mnt
//使用umount命令卸载当前挂载的文件系统
industio@industio$:sudo umount /mnt

1
2

3
4
5
6

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

42

将NFS编译到kernel

按照下面的步骤添加nfs

保存退出之后需要把原来的_deconfig文件覆盖，查看Release_to_customer.sh可以知道Purple Pi是使

用以下文件

所以需要在kernel目录下使用命令覆盖原来文件：

//开发板挂载NFS文件系统
#mount -t nfs -o nolock 192.168.0.17:/home/industio/ssd20x/nfs/ /mnt
#ls /mnt
#umount /mnt

1
2
3
4

Plain Text 复制代码

industio@industio$:cd /kernel
industio@industio$:ARCH=arm make menuconfig

1
2

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

43

重新编译并更新kernel

编译完成需要重新更新kernel，步骤查看烧录流程中的更新uboot和kernel

更新kernel之后，板子上电回车进入uboot，重新设置bootargs，这里需要将bootargs设置根文件系统

指向NFS，这里的192.168.0.17是Ubuntu虚拟机的IP，192.168.0.85为同一路由下的随机IP，

192.168.0.1是路由的IP（由自身的IP而设置），在这里设置指定nfs版本为v3，详细内容如下：

重新启动后，当加载到以下信息，说明了nfs挂载rootfs成功

industio@industio$:cp .config infinity2m_spinand_ssc011a_s01a_minigui_doubl
enet_defconfig

1

Plain Text 复制代码

industio@industio$:./Release_to_customer.sh -f nand -p ssd201 -o 2D061

Plain Text 复制代码

#setenv bootargs console=ttyS0,115200 root=/dev/nfs rw nfsroot=192.168.0.1
7:/home/industio/ssd20x/nfs,v3,nolock ip=192.168.0.85:192.168.0.17:192.168.
0.1:255.255.255.0::eth0:off init=/linuxrc rootwait=1 LX_MEM=0x3f00000 mma_h
eap=mma_heap_name0,miu=0,sz=0xa00000 mma_memblock_remove=1 highres=off mmap
_reserved=fb,miu=0,sz=0x300000,max_start_off=0x3300000,max_end_off=0x360000
0 mtdparts=nand0:384k@1280k(IPL0),384k(IPL1),384k(IPL_CUST0),384k(IPL_CUST
1),768k(UBOOT0),768k(UBOOT1),256k(ENV),256k(ENV1),0x20000(KEY_CUST),0x60000
(LOGO),0x500000(KERNEL),0x500000(RECOVERY),-(UBI)
//保存
#saveenv
//重新启动
#reset

1

2
3
4
5

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

44

buildroot根文件系统已经在/etc/init.d/中添加了一个自启脚本，如需要添加开机自启，添加一个脚本命

令必须为S开头

开机自启

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

45

#!/bin/sh

Start all init scripts in /etc/init.d
executing them in numerical order.
#
for i in /etc/init.d/S??* ;do

 # Ignore dangling symlinks (if any).
 [! -f "$i"] && continue

 case "$i" in
 *.sh)
 # Source shell script for speed.
 (
 trap - INT QUIT TSTP
 set start
 . $i
)
 ;;
 *)
 # No sh extension, so fork subprocess.
 $i start
 ;;
 esac
done

export PATH=$PATH:/config
export TERMINFO=/config/terminfo
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/config/lib:/config/wifi
mkdir -p /dev/pts
mount -t sysfs none /sys
mount -t tmpfs mdev /dev
mount -t debugfs none /sys/kernel/debug/
mdev -s
mkdir -p /var/lock
mount -t ubifs ubi0:miservice /config
 mount -t ubifs ubi0:customer /customer
 mount -t ubifs ubi0:appconfigs /appconfigs

mkdir -p /dev/pts
mount -t devpts devpts /dev/pts
busybox telnetd&
echo 85 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio85/direction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

46

例如在同一目录下的命名方式

添加完脚本后给脚本设置权限即可

例如：使用nfs开机自动挂载文件系统到/mnt目录下

echo 1 > /sys/class/gpio/gpio85/value
echo 86 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio86/direction
echo 1 > /sys/class/gpio/gpio86/value
if [-e /etc/core.sh]; then
 echo "|/etc/core.sh %p" > /proc/sys/kernel/core_pattern
chmod 777 /etc/core.sh
fi;
if [-e /customer/demo.sh]; then
 /customer/demo.sh
fi;

46
47
48
49
50
51
52
53
54
55
56
57

//根据自己命名的实际情况
#chmod 777 Sxx

1
2

Plain Text 复制代码

#touch S51nfs
#chmod 777 S51nfs

1
2

Plain Text 复制代码

#!/bin/sh
#
#mount nfs
#
mount -t nfs -o nolock 192.168.0.17:/home/industio/ssd20x/nfs/ /mnt
echo "mount ok!"

1
2
3
4
5
6
7

Plain Text 复制代码
深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

47

重新开机之后就会看到自动挂载的到/mnt目录下

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

