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Purple Pi R1系统使用说明
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深圳触觉智能科技有限公司


www.industio.cn 


开发板已经默认加载了SD卡驱动，插上SD卡后，在系统中会出现节点/dev/mmcblk1p1（如有多个分

区，则会出现多个/dev/mmcblk1p*），开发板的SD卡对应接口位于J4。


插入SD卡后，系统会默认把SD卡，挂载到/sdcard目录下。


将SD卡插入卡槽中，系统会提示以下信息：


接口说明

SD Card


Purple Pi R1


系统使用说明
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弹出SD卡，系统有如下提示：





输入 df -h ，可查看SD卡挂载路径和挂载信息，默认挂载路径为“/sdcard”。





测试SD卡的读写速度


开发板USB对外接口为J5，如下图所示：


插入U盘后，系统会默认把U盘，挂载到/udisk目录下


插入U盘，系统会提示以下信息：


USB


# time dd if=/dev/zero of=/sdcard/test bs=1k count=10240 conv=fsync 
# time dd if=/sdcard/test of=/dev/null bs=1k count=10240
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2

Plain Text 复制代码
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拔出U盘，系统有如下提示：





输入df -h，可查看U盘挂载路径和挂载信息，默认挂载路径为“/udisk”。


测试U盘的读写速度


模块用的是AMIC，我们可用测试demo：audio_all_test_case进行测试，(此程序在发布包的

sdk\verify\mi_demo\geonosis\audio_all_test_case)

MIC


# time dd if=/dev/zero of=/udisk/test bs=1k count=10240 conv=fsync 
# time dd if=/udisk/test of=/dev/null bs=1k count=10240

1
2

Plain Text 复制代码
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录音指令如下：


Amic 单声道 采样率8K，录音30秒，保存路径为/tmp，音量参数为15，采样率为8000。


播放指令如下：


-t: 程序的运行时间（秒数），不指定则会一直运行
-I: 使能AI
-o: AI录音的输出路径
-d: AI的设备ID(Amic[0] Dmic[1] I2S RX[2] Linein[3])
-c: AI通道数
-v: AI音量参数(Amic 0~21, Dmic 0~4, Linein 0~7)
-s: AI采样率8000/16000/32000/48000
-q: 是否使用AI queue mode
-h: 使能AI Hpf
-g: 使能AI Agc
-e: 使能AI Eq
-n: 使能AI NR
-r: AI 重采样采样率8000/16000/32000/48000
-a: AI 编码类型g711a/g711u/g726_16/g726_24/g726_32/g726_40
-A: 使能AED
-b: 使能AEC
-O: 使能AO
-i: AO播放的输入文件路径
-D: AO设备ID(Lineout[0] I2S TX[1] HDMI[2])
-V: AO音量参数(-60~30)
-h: 使能AO Hpf
-g: 使能AO Agc
-e: 使能AO Eq
-n: 使能AO NR
-r: AO 重采样采样率8000/16000/32000/48000

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

prog_audio_all_test_case使用说明: Plain Text 复制代码

#prog_audio_all_test_case  -t 20 -I -o /tmp -d 0  -c 2 -v 15 -s 8000 1

Plain Text 复制代码

 #prog_audio_all_test_case -t 10 -O -i /tmp/Chn0_Amic_8K_16bit_MONO.wav  -
D 0 -V 3

1

Plain Text 复制代码
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Lineout播放测试demo同MIC一样：audio_all_test_case


Lineout播放/media/pizzicato.wav


note：Only support wav file.


我们已经配置好tslib，可以直接使用它生成的工具。





TP测试方法如下：


初始化屏幕：


执行测试demo：


可看到以下界面，我们可以在demo中执行划线操作，验证tp是否触摸正常。


耳机


TP


#prog_audio_all_test_case -t 10 -O -i /media/pizzicato.wav -D 0 -V 31

Plain Text 复制代码

# cd /customer
# ./disp_init &

1
2

Plain Text 复制代码

 #ts_test_mt 1

Plain Text 复制代码
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注意：使用ts_test_需mt要执行disp_init来初始化屏，用logo会出现花屏


我们也可以通过测试程序tp_test进行测试：


tp_test.c测试源码：
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#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <linux/input.h>


static int event0_fd = -1;
struct input_event ev0;


static int handle_event0()
{
        int rd;


        rd = read(event0_fd, &ev0, sizeof(struct input_event));
        if(rd < sizeof(struct input_event)){
                return 0;
        }


        if(EV_ABS == ev0.type){
                if (ev0.code == ABS_X){
                        printf("ABS_X:");
                }else if (ev0.code == ABS_Y){
                        printf("ABS_Y:");
                }else if (ev0.code == ABS_PRESSURE){
                        printf("ABS_PRESSURE:");
                }else{
                        printf("UNKNOWEN:");
                }
                printf("value:%d\n", ev0.value);
        }


        return 1;
}


int main(void)
{
        int done = 1;


        event0_fd = open("/dev/input/event0", O_RDONLY);
        if(event0_fd <0) {
                printf("open input device error\n");
                return -1;
        }
        while (done){

1
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13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

tp_test.c Plain Text 复制代码
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编译： arm-linux-gnueabihf-gcc tp_test.c -o tp_test


将TP测试源码拷贝到Ubuntu中，编译生成tp_test，然后通过U盘拷贝至开发板。


执行tp_test测试：/udisk/tp_test





在Purple Pi上的LCD接口默认是RGB565的，需外接LCD显示屏的转接板,这里适配一块7寸1024x600

分辨率的MIPI屏。


屏幕资料：








我们可以通过logo来显示图片测试屏幕是否显示正常。


找一张1024x600分辨率JPG格式的图片，并重命名为logo.jpg。


将logo.jpg 和 logo 放在同一目录下。


输入以下指令：


LCD


                done = handle_event0();
        }


        if(event0_fd > 0){
                close(event0_fd);
                event0_fd = -1;
        }
        return 0;
}

46
47
48
49
50
51
52
53
54

📎IDO-EXB2D06-V1-SCH.pdf
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我们可以看到图片正常显示了。


#./logo logo.jpg &1

Plain Text 复制代码
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LCD屏使用GPIO4作为背光控制，默认配置为pwm0。


测试方法：


可以看到屏幕的背光根据参数的改变而变化。


使用infinity2m-spinand-ssc011a-s01a-rgb565-rmii.dts，根据原理图，ETH1使用PAD_TTL16-

PAD_TTL23、PAD_GPIO0和PAD_GPIO1：


PWM


以太网


#echo 0 > /sys/class/pwm/pwmchip0/export
#echo 2000 > /sys/class/pwm/pwmchip0/pwm0/period
#echo 25 > /sys/class/pwm/pwmchip0/pwm0/duty_cycle
#echo 1 > /sys/class/pwm/pwmchip0/pwm0/enable
#echo 100 > /sys/class/pwm/pwmchip0/pwm0/duty_cycle

1
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4
5

Plain Text 复制代码
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结合SSD201 HW Checklist V6.xlsx，ETH1的MODE为4：


其他默认配置即可。


测试
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以eth0为例，在网口接口插上网线（另一端连接路由器），执行以下命令可对网口进行操作。


1、接上网线，dhcpcd自动获取IP地址。





尝试ping外网





确认可以ping通


其它以太网的配置可以参考余下几点。


2、查看eth0 网卡


# ping www.baidu.com1

Plain Text 复制代码

# ifconfig eth0 1

Plain Text 复制代码
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3、关闭和开启网卡


4、设置静态IP地址


5、设置MAC地址


6、设置子网掩码


7、设置广播地址


8、网关添加和删除


 #ifconfig eth0 up
 #ifconfig eth0 down

1
2

Plain Text 复制代码

# ifconfig eth0 192.168.0.231

Plain Text 复制代码

#ifconfig eth0 hw ether 36:72:C3:0A:FE:B31

Plain Text 复制代码

# ifconfig eth0 netmask 255.255.255.01

Plain Text 复制代码

# ifconfig eth0 broadcast 192.168.0.2551

Plain Text 复制代码
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9、设置DNS


添加和修改DNS，需要修改“/etc/resolv.conf”文件。


例：给开发板添加DNS “114.114.114.114”，操作方法如下所示


在文件最后添加一行nameserver 114.114.114.114


10、手动动态获取IP地址


11、配置静态IP


修改“/etc/network/interfaces”文件


添加内容，设置eth0为静态IP，地址为192.168.0.19


# route add default gw 192.168.0.1
# route del default gw 192.168.0.1

1
2

Plain Text 复制代码

# vi /etc/resolv.conf1

Plain Text 复制代码

# Generated by dhcpcd from eth0.dhcp
# /etc/resolv.conf.head can replace this line
domain lan
nameserver 114.114.114.114


# /etc/resolv.conf.tail can replace this linea

1
2
3
4
5
6

Plain Text 复制代码

3 udhcpc -i eth01

Plain Text 复制代码

3 vi /etc/network/interfaces1

Plain Text 复制代码
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开启网卡服务


系统起来后，将看到/dev/rtc0设备节点


RTC


#auto eth0
#iface eth0 inet static
#address 192.168.0.19
#netmask 255.255.255.0
#gateway 192.168.0.1

1
2
3
4
5

Plain Text 复制代码

#/etc/init.d/S40network restart1

Plain Text 复制代码
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验证


读取RTC时间：


设置RTC时间：


写入RTC时间


装上RTC电池，然后把开发板电源断开，并等待一段时间再接通电源，可以看到RTC在断电这段时间内

是继续计时的。


# hwclock -r1

Plain Text 复制代码

# date -s "2021-03-03 00:00:00" 
# hwclock -w 
# hwclock -s

1
2
3

Plain Text 复制代码

# hwclock -w1

Plain Text 复制代码

# hwclock -r1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司
 

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn



18

至此，内部RTC调试完成。


wifi是USB接口的（USB1）,系统启动后，通过lsusb可以看到1b20:8888的设备，它便是wifi模块。





我们也可由此判断模块是否正常加载。


加载驱动


执行config/wifi/ssw01bInit_purple_pi.sh会自动加载驱动：





驱动加载完后，我们便能看到wlan0网卡了：


wifi


STA模式


# /config/wifi/ssw01bInit_purple_pi.sh1

Plain Text 复制代码
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前面已经使用/config/wifi/ssw01bInit.sh加载了模块驱动，并且wlan0网卡已存在。现在我们通过

wpa_supplicant工具（在/config/wifi目录下）来连接wifi热点。


修改/appconfigs/wpa_supplicant.conf，填入wifi热点信息：


当然，在连接之前先看看能否搜索到这个热点：


可以看到已经搜索到这个热点，接下来尝试连接：


# vi /appconfigs/wpa_supplicant.conf1

Plain Text 复制代码

#  /config/wifi/iwlist wlan0 scan1

Plain Text 复制代码
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提示没有相关库，这些库位于/config/wifi/目录下，我们配置一下LD_LIBRARY_PATH。


看起来是连接上了，但ifconfig发现没有分配到IP，这是因为没有dhcp服务：


这里我先手动给它设置一个IP，并测试是否能否和同一路由器下的设备通信：


# /config/wifi/wpa_supplicant -D nl80211 -i wlan0 -c /appconfigs/wpa_suppli
cant.conf -B &

1

Plain Text 复制代码

# export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/config/wifi
 /config/wifi/wpa_supplicant -D nl80211 -i wlan0 -c /appconfigs/wpa_supplic
ant.conf -B &



1
2

3

Plain Text 复制代码

# ifconfig wlan0 192.168.1.134
# ping 192.168.1.166

1
2

Plain Text 复制代码
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可以看到能够正常通信，接下来给它设置DNS和网关，然后测试能否上网：


好的，现在可以上网了。为了让它在连接热点时自动获取IP、DNS及网关，我们需要添加dhcp服务，当

然，这个服务可以从buildroot获得：


# route add default gw 192.168.1.1
# echo nameserver 114.114.114.114 > /etc/resolv.conf
# ping www.baidu.com

1
2
3

Plain Text 复制代码

industio@industio$: cd buildroot-2020.05/
industio@industio$: ARCH=arm make menuconfig

1
2

Plain Text 复制代码深
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这里我们默认配置好了，可以直接使用。系统启动后，可以看到dhcp服务已经开启了：


接下来，开始wifi连接：


可以看到dhcp服务已经正常工作了。


# /config/wifi/ssw01bInit.sh
# ifconfig wlan0 up
# vi /appconfigs/wpa_supplicant.conf
# /config/wifi/wpa_supplicant -D nl80211 -i wlan0 -c /appconfigs/wpa_suppli
cant.conf -B &
# ifconfig wlan0
# route
# cat /etc/resolv.conf
# ping www.baidu.com

1
2
3
4

5
6
7
8

Plain Text 复制代码
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首先需要配置kernel config：


每次修改配置后，更新一下defconfig：


系统起来后，首先加载wifi驱动：


AP模式


industio@industio$:cd kernel
industio@industio$:ARCH=arm make menuconfig

1
2

Plain Text 复制代码

industio@industio$: cp .config ./arch/arm/configs/infinity2m_spinand_ssc011
a_s01a_minigui_double_net_defconfig -f

1

Plain Text 复制代码

# /config/wifi/ssw01bInit.sh
# ifconfig wlan0 up

1
2

Plain Text 复制代码
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当然，我们的WIFI模块作为AP热点，需要配置一下热点信息：


接下来，打开AP热点：


此时，在手机/电脑上就可以搜索到我们的AP热点了：


# vi /config/wifi/hostapd.conf1

Plain Text 复制代码

# /config/wifi/hostapd -B /config/wifi/hostapd.conf 1

Plain Text 复制代码
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尝试连接，发现一直在连接但并没有连接成功，这是因为没有开启DHCP服务，没有给连接设备分配到

IP导致连接失败，所以我们还需要开启DHCP服务（使用dnsmasq工具）：

关注dhcp-range，它表示给配给设备的IP范围：


关注interface，这里把它设置为wlan0：


由于dhcp-range设置为192.168.1.x，因此wlan0的静态IP设置为192.168.0.1：


此时，设备可以正常连接了，并且分配的IP位于dhcp-range范围内：


# vi /config/wifi/dnsmasq.conf1

Plain Text 复制代码

# ifconfig wlan0 192.168.0.11

Plain Text 复制代码
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现在设备可以正常连接热点了，但此时我想连接设备能够上网，即把板子当作一个路由器，把eth0当作

WAN，把wlan0当作LAN。


首先需要确认eth0是可以上网的：


通过brctl桥接工具可以实现，此工具默认是没有安装的，和之前一样，从buildroot获取：


# ping www.baidu.com -I eth01

Plain Text 复制代码

industio@industio$: cd buildroot-2020.05/
industio@industio$: ARCH=arm make menuconfig
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重新编译并更新固件：


更新固件后，前面的加载驱动、hostapd服务和dnsmasq服务需要重新执行，然后执行以下命令建立桥

接：


此时，连接设备就可以正常上网了：


双排针接口说明列表


双排针


industio@industio$: cp .config ./configs/ssd20x_defconfig -f
industio@industio$: make BR2_JLEVEL=4
industio@industio$: cd ../project/image/rootfs
industio@industio$: rm rootfs/* -rf
industio@industio$: cp ../../../buildroot-2020.05/output/images/rootfs.tar 
./ -f
industio@industio$: tar -xvf rootfs.tar -C ./rootfs/
industio@industio$: tar -cvf rootfs.tar.gz ./rootfs
industio@industio$: cd ../../../ 

1
2
3
4
5

6
7
8

Plain Text 复制代码

industio@industio$: ./Release_to_customer.sh  -f nand -p ssd202  -m 2561

Plain Text 复制代码

# brctl addbr br0
# brctl addif br0 wlan0
# brctl addif br0 eth0
# ifconfig br0 up
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序

号


丝印
 默认模

式/功能





节点
 序

号


丝印
 默认模式/

功能





节点





1
 3V3
 2
 VCC5V


3
 I2C0_S

DA
 IIC-0
 /dev/i2c-0


4
 VCC5V


5
 I2C0_S

CL


6
 GND


7
 GPIO13
 /sys/class/gpio

/gpio13


（默认作为TP 中

断）


8
 NC


9
 GND
 10
 NC


11
 GPIO12
 /sys/class/gpio

/gpio12


（默认作为TP 复

位）


12
 NC


13
 GPIO47
 /sys/class/gpio

/gpio47


14
 GND


15
 GPIO48
 /sys/class/gpio

/gpio48


16
 GPIO50
 /sys/class/gpio

/gpio50


17
 3V3
 18
 GPIO49
 /sys/class/gpio

/gpio49


19
 SPI0_D

O
 spi0
 /dev/spidev0.0


20
 GND


21
 SPI0_DI
 22
 NC


23
 SPI0_C

K


24
 SPI0_CZ
 spi0
 /dev/spidev0.0


25
 GNG
 26
 GPIO5
 /sys/class/gpio

/gpio5
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接口定义列表：


SPI


27
 NC
 28
 NC


29
 GPIO16
 /sys/class/gpio

/gpio16


30
 GND


31
 GPIO15
 /sys/class/gpio

/gpio15


32
 GPIO73
 /sys/class/gpio

/gpio47


33
 GPIO17
 /sys/class/gpio

/gpio17


34
 GND


35
 GPIO18
 /sys/class/gpio

/gpio18


36
 GPIO87
 /sys/class/gpio

/gpio87


37
 GPIO59
 /sys/class/gpio

/gpio59


38
 GPIO88
 /sys/class/gpio

/gpio88


39
 GND
 40
 GPIO89
 /sys/class/gpio

/gpio89


GPIO8
 SPI0_CZ


GPIO9
 SPI0_CK





GPIO10
 SPI0_DI


GPIO11
 SPI0_DO


接口
 节点


SPI0
 /dev/spidev0.0
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开发板默认配置好了SPI。我们可以通过回环测试，确定SPI是否能正常使用。


查看是否有spi节点生成：


可以看到spi节点已经出来了。

使用跳线帽短接GPIO10–GPIO11（短接MISO和MOSI）进行回环测试。


测试源码：


# ls /dev/spi*1
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#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <stdint.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <strings.h>
#include <string.h>
#include "../../project/kbuild/4.9.84/i2m/include/uapi/linux/spi/spidev.
h"




static const char *device = "/dev/spidev0.0";
static uint8_t mode = 0; /* SPI 通信使用全双工，设置 CPOL＝0，CPHA＝0。 */
static uint8_t bits = 8; /* ８ｂiｔｓ读写，MSB first。*/
static uint32_t speed = 12*1000*1000;/* 设置传输速度 */
static uint16_t delay = 0;
static int g_SPI_Fd = 0;


#define SPI_DEBUG 1


static void pabort(const char *s)
{
    perror(s);
    abort();
}


int SPI_Transfer(const uint8_t *TxBuf, uint8_t *RxBuf, int len)
{
    int ret;
    int fd = g_SPI_Fd;
    struct spi_ioc_transfer tr ={
        .tx_buf = (unsigned long) TxBuf,
        .rx_buf = (unsigned long) RxBuf,
        .len =len,
        .delay_usecs = delay,
    };
    ret = ioctl(fd, SPI_IOC_MESSAGE(1), &tr);
    if (ret < 1)
        perror("can't send spi message\n");
    else
    {
#if SPI_DEBUG

1
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        int i;
        printf("nsend spi message Succeed\n");
        printf("nSPI Send [Len:%d]: \n", len);
        for (i = 0; i < len; i++)
        {
            if (i % 8 == 0)
                printf("nt\n");
            printf("0x%02X \n", TxBuf[i]);
        }
        printf("n");
        printf("SPI Receive [len:%d]:\n", len);
        for (i = 0; i < len; i++)
        {
            if (i % 8 == 0)
                printf("nt\n");
            printf("0x%02X \n", RxBuf[i]);
        }
#endif
    }
    return ret;
}


int SPI_Write(uint8_t *TxBuf, int len)
{
    int ret;
    int fd = g_SPI_Fd;
    ret = write(fd, TxBuf, len);
    if (ret < 0)
        perror("SPI Write error\n");
    else
    {
#if SPI_DEBUG
        int i;
        printf("SPI Write [Len:%d]: \n", len);
        for (i = 0; i < len; i++)
        {
            if (i % 8 == 0)
                printf("\n\t");
            printf("0x%02X \n", TxBuf[i]);
        }
        printf("\n");
#endif
    }
    return ret;
}


int SPI_Read(uint8_t *RxBuf, int len)
{
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    int ret;
    int fd = g_SPI_Fd;
    ret = read(fd, RxBuf, len);
    if (ret < 0)
        printf("SPI Read error\n");
    else
    {
#if SPI_DEBUG
        int i;
        printf("SPI Read [len:%d]:\n", len);
        for (i = 0; i < len; i++)
        {
            if (i % 8 == 0)
                printf("\n\t");
            printf("0x%02X \n", RxBuf[i]);
        }
        printf("\n");
#endif
    }
    return ret;
}


int SPI_Open(void)
{
    int fd;
    int ret = 0;
    if (g_SPI_Fd != 0) /* 设备已打开 */
        return 0xF1;
    fd = open(device, O_RDWR);
    if (fd < 0)
        pabort("can't open device\n");
    else
        printf("SPI - Open Succeed. Start Init SPI...\n");
    g_SPI_Fd = fd;


    ret = ioctl(fd, SPI_IOC_WR_MODE, &mode);
    if (ret == -1)
        pabort("can't set spi mode\n");
    ret = ioctl(fd, SPI_IOC_RD_MODE, &mode);
    if (ret == -1)
        pabort("can't get spi mode\n");
    /*
     * bits per word
     */
    ret = ioctl(fd, SPI_IOC_WR_BITS_PER_WORD, &bits);
    if (ret == -1)
        pabort("can't set bits per word\n");
    ret = ioctl(fd, SPI_IOC_RD_BITS_PER_WORD, &bits);
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    if (ret == -1)
        pabort("can't get bits per word\n");
    /*
     * max speed hz
     */
    ret = ioctl(fd, SPI_IOC_WR_MAX_SPEED_HZ, &speed);
    if (ret == -1)
        pabort("can't set max speed hz\n");
    ret = ioctl(fd, SPI_IOC_RD_MAX_SPEED_HZ, &speed);
    if (ret == -1)
        pabort("can't get max speed hz\n");
    printf("spi mode: %d\n", mode);
    printf("bits per word: %d\n", bits);
    printf("max speed: %d KHz (%d MHz)\n", speed / 1000, speed / 1000 / 1
000);
    return ret;
}


int SPI_Close(void)
{
    int fd = g_SPI_Fd;
    if (fd == 0) /* SPI 是否已经打开*/
        return 0;
    close(fd);
    g_SPI_Fd = 0;
    return 0;
}


int SPI_LookBackTest(void)
{
    int ret, i;
    const int BufSize = 16;
    uint8_t tx[BufSize], rx[BufSize];
    bzero(rx, sizeof(rx));
    for (i = 0; i < BufSize; i++)
        tx[i] = i;
    printf("nSPI - LookBack Mode Test...\n");
    ret = SPI_Transfer(tx, rx, BufSize);
    if (ret > 1)
    {
        ret = memcmp(tx, rx, BufSize);
        if (ret != 0)
        {
            printf("tx:\n");
            for (i = 0; i < BufSize; i++)
            {
                printf("%d ", tx[i]);
            }
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将源码拷贝到Ubuntu虚拟机，下进行编译，生成执行文件spi_test。


将执行文件spi_test拷贝到开发板执行。





            printf("\n");
            printf("rx:\n");
            for (i = 0; i < BufSize; i++)
            {
                printf("%d ", rx[i]);
            }
            printf("\n");

188
189
190
191
192
193
194
195

industio@industio$:arm-linux-gnueabihf-gcc spi_test.c -o spi_test -lpthread1
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I2C接口定义与节点列表：


I2C测试需要外接I2C设备，这里我们以TP为例，通过i2cdetect进行测试。


开发板中输入：


通过设备号确认识别i2c设备：





I2C


接口
 节点
 备注


i2c0
 /dev/i2c-0
 gpio6、gpio7


i2c1
 /dev/i2c-1
 gpio2、gpio3


IO
 配置
 备注


GPIO6
 I2C0_SCL


GPIO7
 I2C0_SDA


GPIO2
 I2C1_SCL
 目前用于屏幕TP使用


GPIO3
 I2C1_SDA


#i2cdetect -r -y 1 >> i2c.log1

Plain Text 复制代码

#cat i2c.log 1
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可以看到识别到了TP，TP的设备地址：0x5d。


可通过以下命令控制GPIO,例如GPIO14:


申请gpio：


设置为输出：


设置为输入：


输出高电平：


输出低电平：


获取输入电平（0：低电平，1：高电平）


GPIO


#echo 14 > /sys/class/gpio/export1

Plain Text 复制代码

#echo out > /sys/class/gpio/gpio14/direction1

Plain Text 复制代码

#echo in > /sys/class/gpio/gpio14/direction1

Plain Text 复制代码

#echo 1 > /sys/class/gpio/gpio14/value1

Plain Text 复制代码

#echo 0 > /sys/class/gpio/gpio14/value1

Plain Text 复制代码
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在buildroot中已经默认配置了SSH，不需要重新配置，可以直接使用，使用前需要知道开发板的IP地址





打开软件（putty,secureCRT，CMD等），账户名：root，密码：123456


SSH


#cat /sys/class/gpio/gpio14/value1

Plain Text 复制代码
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在Ubuntu虚拟机下安装NFS服务


Ubuntu虚拟机下准备NFS文件系统（如果不是使用提供的Ubuntu镜像，需要把源码复制到自己的

Ubuntu虚拟机上）


NFS


industio@industio$:sudo apt-get install nfs-kernel-server1

Plain Text 复制代码
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在Ubuntu虚拟机开启NFS服务


如果上面的步骤没有问题，接下来重启nfs服务


NFS服务重启成功





本地验证


industio@industio$:cd ~/ssd20x
industio@industio$:mkdir nfs
industio@industio$:cd  nfs
industio@industio$:cp ../project/image/output/rootfs/* ./ -rf
industio@industio$:cp ../project/image/output/customer/ ./ -rf
industio@industio$:cp ../project/image/output/appconfigs/ ./ -rf
industio@industio$:cp ../project/image/output/miservice/config/ ./ -rf

1
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7

Plain Text 复制代码

industio@industio$:sudo vi /etc/exports
//如果提示没有文档，请查看nfs服务是否安装。进入文件在后面添加以下内容
/home/industio/ssd20x/nfs *(rw,sync)



1
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4

Plain Text 复制代码

industio@industio$:sudo /etc/init.d/nfs-kernel-server restart1
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开发板挂载NFS


确认开发板与Ubuntu虚拟机处于同一局域网内，并且能互相通信。


Ubuntu虚拟机的IP地址如下：





开发板ping Ubuntu虚拟机的IP正常通信





//使用ifconfig查看Ubuntu IP地址，Ubuntu IP地址为192.168.0.17
industio@industio$:sudo mount -t nfs -o nolock 192.168.0.17:/home/industio/
ssd20x/nfs/ /mnt
//挂载成功查看目录是否与之前准备的文件系统一样
industio@industio$:ls /mnt
//使用umount命令卸载当前挂载的文件系统
industio@industio$:sudo umount /mnt
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将NFS编译到kernel


按照下面的步骤添加nfs





保存退出之后需要把原来的_deconfig文件覆盖，查看Release_to_customer.sh可以知道Purple Pi是使

用以下文件


所以需要在kernel目录下使用命令覆盖原来文件：


//开发板挂载NFS文件系统
#mount -t nfs -o nolock 192.168.0.17:/home/industio/ssd20x/nfs/ /mnt
#ls /mnt
#umount /mnt

1
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4

Plain Text 复制代码

industio@industio$:cd /kernel
industio@industio$:ARCH=arm make menuconfig
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重新编译并更新kernel


编译完成需要重新更新kernel，步骤查看烧录流程中的更新uboot和kernel


更新kernel之后，板子上电回车进入uboot，重新设置bootargs，这里需要将bootargs设置根文件系统

指向NFS，这里的192.168.0.17是Ubuntu虚拟机的IP，192.168.0.85为同一路由下的随机IP，

192.168.0.1是路由的IP（由自身的IP而设置），在这里设置指定nfs版本为v3，详细内容如下：


重新启动后，当加载到以下信息，说明了nfs挂载rootfs成功


industio@industio$:cp .config infinity2m_spinand_ssc011a_s01a_minigui_doubl
enet_defconfig

1

Plain Text 复制代码

industio@industio$:./Release_to_customer.sh -f nand -p ssd201 -o 2D061

Plain Text 复制代码

#setenv bootargs console=ttyS0,115200 root=/dev/nfs rw nfsroot=192.168.0.1
7:/home/industio/ssd20x/nfs,v3,nolock ip=192.168.0.85:192.168.0.17:192.168.
0.1:255.255.255.0::eth0:off init=/linuxrc rootwait=1 LX_MEM=0x3f00000 mma_h
eap=mma_heap_name0,miu=0,sz=0xa00000 mma_memblock_remove=1 highres=off mmap
_reserved=fb,miu=0,sz=0x300000,max_start_off=0x3300000,max_end_off=0x360000
0 mtdparts=nand0:384k@1280k(IPL0),384k(IPL1),384k(IPL_CUST0),384k(IPL_CUST
1),768k(UBOOT0),768k(UBOOT1),256k(ENV),256k(ENV1),0x20000(KEY_CUST),0x60000
(LOGO),0x500000(KERNEL),0x500000(RECOVERY),-(UBI)
//保存
#saveenv
//重新启动
#reset

1
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buildroot根文件系统已经在/etc/init.d/中添加了一个自启脚本，如需要添加开机自启，添加一个脚本命

令必须为S开头


开机自启
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#!/bin/sh




# Start all init scripts in /etc/init.d
# executing them in numerical order.
#
for i in /etc/init.d/S??* ;do


     # Ignore dangling symlinks (if any).
     [ ! -f "$i" ] && continue


     case "$i" in
        *.sh)
            # Source shell script for speed.
            (
                trap - INT QUIT TSTP
                set start
                . $i
            )
            ;;
        *)
            # No sh extension, so fork subprocess.
            $i start
            ;;
    esac
done


export PATH=$PATH:/config
export TERMINFO=/config/terminfo
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/config/lib:/config/wifi
mkdir -p /dev/pts
mount -t sysfs none /sys
mount -t tmpfs mdev /dev
mount -t debugfs none /sys/kernel/debug/
mdev -s
mkdir -p /var/lock
mount -t ubifs ubi0:miservice /config
 mount -t ubifs ubi0:customer /customer
 mount -t ubifs ubi0:appconfigs /appconfigs


mkdir -p /dev/pts
mount -t devpts devpts /dev/pts
busybox telnetd&
echo 85 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio85/direction
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例如在同一目录下的命名方式


添加完脚本后给脚本设置权限即可


例如：使用nfs开机自动挂载文件系统到/mnt目录下





echo 1 > /sys/class/gpio/gpio85/value
echo 86 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio86/direction
echo 1 > /sys/class/gpio/gpio86/value
if [ -e /etc/core.sh ]; then
    echo "|/etc/core.sh %p" > /proc/sys/kernel/core_pattern
chmod 777 /etc/core.sh
fi;
if [ -e /customer/demo.sh ]; then
    /customer/demo.sh
fi;



46
47
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//根据自己命名的实际情况
#chmod 777 Sxx

1
2

Plain Text 复制代码

#touch S51nfs
#chmod 777 S51nfs

1
2

Plain Text 复制代码

#!/bin/sh
#
#mount nfs
#
mount -t nfs -o nolock 192.168.0.17:/home/industio/ssd20x/nfs/ /mnt
echo "mount ok!"
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重新开机之后就会看到自动挂载的到/mnt目录下
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