
1

PurPle-Pi-R1接口调试教程手册

接口调试

确认DTS文件

kernel

uboot

rootfs

1.1. IMAGE_CONFIG

1.2. CUSTOMER_TAILOR

1.3. BOOTLOGO_FILE

1.4. DISP_OUT_NAME

内存大小的问题

Flash分区大小问题

文件系统只读问题

buildroot文件系统定制

快速启动模式fastboot

LCD配置

kernel配置(dts配置)

点屏流程

dts的配置

project的配置

jpeg2disp的配置

配置屏参文件

jpegdisp的配置

常见问题

bootlogo配置

TP配置

配置kernel

配置DTS

验证

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

2

测试：

GPIO配置

uboot 、kernel下使用GPIO

user space 使用 GPIO

DTS的配置

kernel的配置

验证

ETH配置

以太网框架图

RMII接口介绍

DTS的配置

Kernel配置

WIFI配置

驱动配置

project配置

Kernel配置

DTS的配置

加载驱动

STA模式

AP模式

上网

RTC配置

kernel配置

RTC操作方法

DTS配置

音频（耳机）配置

1. LineOut

DTS配置

验证

补充

2. DMIC

DTS的配置

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

3

kernel

3. AMIC

4. I2S

DTS的配置

Watchdog配置

开启驱动

测试

添加 watchdog 服务

深圳触觉智能科技有限公司

www.industio.cn

PurPle-Pi-R1

接口调试教程手册

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

http://www.industio.cn/

4

文档修订历史

首先我们先确定我们sdk内核的版本为4.9.84

接口调试

版本
 修订内容 修订 审核 日期

V1.0
 创建文档 何伟聪
 2022/08/02

cat kernel/Makefile | more1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

5

我们进入我们脚本文件Release_to_customer.sh，进行了解kernel、uboot、rootfs。

如果我们的使用的flash是nand的话，我们使用的defconfig是：

位置在kernel/arch/arm/configs/，我们进入该文件找到生成的DTB文件是：

确认DTS文件

kernel

#build kernel
cd ${RELEASEDIR}/kernel
declare -x ARCH="arm"
declare -x CROSS_COMPILE="arm-linux-gnueabihf-"
if ["${flashtype}" = "nor"]; then
 if ["${fastboot}" = "fastboot"]; then
 make infinity2m_ssc011a_s01a_fastboot_defconfig
 else
 make infinity2m_ssc011a_s01a_minigui_defconfig
 fi
else
 if ["${fastboot}" = "fastboot"]; then
 make infinity2m_spinand_ssc011a_s01a_minigui_fastboot_doub
lenet_defconfig
 else
 make infinity2m_spinand_ssc011a_s01a_minigui_doublenet_def
config
 fi

fi

1
2
3
4
5
6
7
8
9
10
11
12
13

14
15

16
17
18

Plain Text 复制代码

infinity2m_spinand_ssc011a_s01a_minigui_doublenet_defconfig1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

6

从infinity2m-spinand-ssc011a-s01a-rgb565-rmii-doublenet.dtb中可以知道我们的dts就是从

infinity2m-spinand-ssc011a-s01a-rgb565-rmii-doublenet.dts，位置在kernel/arch/arm/boot/dts,

我们打开dts发现里面包含了这三个文件，我们后续的内核设备树的配置主要都在这三个文件内。

uboot

infinity2m-spinand-ssc011a-s01a-rgb565-rmii-doublenet1

Plain Text
复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

7

在Release_to_customer.sh中可以看到，当flash为nand时，uboot下的配置文件如下：位置

在/boot/configs/infinity2m_spinand_defconfig

infinity2m_spinand_defconfig配置如下所示：

从CONFIG_SYS_SOC，我们可以知道，我们的配置文件文件为：

build uboot
cd ${RELEASEDIR}/boot
declare -x ARCH="arm"
declare -x CROSS_COMPILE="arm-linux-gnueabihf-"
if ["${flashtype}" = "nor"]; then
 make infinity2m_defconfig
else
 make infinity2m_spinand_defconfig
fi
#make clean
make -j8

if ["${flashtype}" = "nor"]; then
 if [-d ../project/board/i2m/boot/nor/uboot]; then
 cp u-boot.xz.img.bin ../project/board/i2m/boot/nor/uboot
 fi
else
 if [-d ../project/board/i2m/boot/spinand/uboot]; then
 cp u-boot_spinand.xz.img.bin ../project/board/i2m/boot/spi
nand/uboot
 fi
fi

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

20
21
22

Plain Text 复制代码

vi CONFIG_MS_SAVE_ENV_IN_NAND_FLASH1

Plain Text 复制代码

CONFIG_SYS_ARCH="arm"
CONFIG_SYS_CPU="armv7"
CONFIG_SYS_SOC="infinity2m"
CONFIG_SYS_CONFIG_NAME="infinity2m"

1
2
3
4
5

Plain Text 复制代码深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

8

配置信息如下：

boot/include/configs/infinity2m.h1

Plain Text 复制代码

#ifdef CONFIG_MS_SPINAND
#if defined(CONFIG_MS_SAVE_ENV_IN_NAND_FLASH)
#define CONFIG_ENV_IS_IN_NAND
#define CONFIG_ENV_OFFSET CONFIG_MSTAR_ENV_NAND_OFFSET
#define CONFIG_MSTAR_ENV_NAND_OFFSET ms_nand_env_offset
/*#define CONFIG_MSTAR_ENV_NAND_OFFSET 0x440000*/
#define CONFIG_ENV_RANGE 0x20000
#define CONFIG_ENV_SIZE 0x1000 // Using 4K length for env is enoug
h, this length must be the same as IPL's env when using fastboot. // 0x000
20000
#define CONFIG_ENV_OFFSET_REDUND CONFIG_MSTAR_ENV_NAND_REDUND_OFFSET
#define CONFIG_MSTAR_ENV_NAND_REDUND_OFFSET ms_nand_env_redund_offset
#endif

#define CONFIG_CMD_SPINAND_CIS
#define CONFIG_CMD_UBI
/* #define CONFIG_CMD_UBIFS */
#define CONFIG_UBI_MWRITE
#define MTDIDS_DEFAULT "nand0=nand0" /* "nor0=physmap-
flash.0,nand0=nand" */
/* must be different from real partition to test NAND partition funct
ion */
#define MTDPARTS_DEFAULT "mtdparts=nand0:0xC0000@0x140000(N
PT),-(UBI)"
/* #define MTDPARTS_DEFAULT "mtdparts=nand0:0x60000@0x140000(IPL
0),0x60000(IPL1),0x60000(IPL_CUST0),0x60000(IPL_CUST1),0xC0000(UBOOT0),0xC
0000(UBOOT1),0x60000(ENV),0x340000(KERNEL),0x340000(RECOVERY),-(UBI)"*/

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17

18

19

20

21
22

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

9

从Release_to_customer.sh中可以看到，当flash类型选择为nand，芯片类型选择为ssd201，并且不开

启fastboot模式时，在project目录下执行了：

Release_to_customer.sh脚本内容如下：

rootfs

./setup_config.sh ./configs/nvr/i2m/8.2.1/spinand.glibc.011a.1281

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

10

我们进入配置文件：

#build project
cd ${RELEASEDIR}/project
if ["${flashtype}" = "nor"]; then
 if ["${fastboot}" = "fastboot"]; then
 echo test fastboot
 ./setup_config.sh ./configs/nvr/i2m/8.2.1/nor.glibc-ramfs.
011a.64
 else
 if ["${chip}" = "ssd201"]; then
 ./setup_config.sh ./configs/nvr/i2m/8.2.1/nor.glib
c-squashfs.011a.64
 fi
 if ["${chip}" = "ssd202"]; then
 ./setup_config.sh ./configs/nvr/i2m/8.2.1/nor.glib
c-squashfs.011a.128
 fi
 fi
else
 if ["${fastboot}" = "fastboot"]; then
 if ["${chip}" = "ssd201"]; then
 ./setup_config.sh ./configs/nvr/i2m/8.2.1/spinand.
ram-glibc-squashfs.011a.64
 elif ["${chip}" = "ssd202"]; then
 ./setup_config.sh ./configs/nvr/i2m/8.2.1/spinand.
ram-glibc-squashfs.011a.128
 fi
 else
 if ["${chip}" = "ssd201"]; then
 ./setup_config.sh ./configs/nvr/i2m/8.2.1/spinand.
glibc.011a.64
 fi
 if ["${chip}" = "ssd202"]; then
 ./setup_config.sh ./configs/nvr/i2m/8.2.1/spinand.
glibc.011a.128
 fi
 fi

fi

1
2
3
4
5
6

7
8
9

10
11
12

13
14
15
16
17
18

19
20

21
22
23
24

25
26
27

28
29
30
31
32

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

11

1. IMAGE_CONFIG(分区配置)=spinand.ubifs.p2.partition.config

2. CUSTOMER_TAILOR(APP配置)=nvr_i2m_display_glibc_tailor.mk

3. BOOTLOGO_FILE(logo文件名)=sigmastar1024_600.jpg

4. DISP_OUT_NAME(屏幕型号)=SAT070CP50

1.1. IMAGE_CONFIG

vi project/configs/nvr/i2m/8.2.1/spinand.glibc.011a.1281

Plain Text 复制代码

vi project/image/configs/i2m/spinand.ubifs.p2.partition.config1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

12

IMAGE_LIST = cis ipl ipl_cust uboot logo kernel rootfs miservice customer
appconfigs
OTA_IMAGE_LIST = ipl ipl_cust uboot logo kernel miservice customer appconf
igs
FLASH_TYPE = spinand
UBI_MLC_TYPE = 0
PAT_TABLE = ubi
PHY_TEST = no
#overwrite CIS(BL0,BL1,UBOOT) PBAs
CIS_PBAs = 10 0 0
CIS_COPIES = 5
USR_MOUNT_BLOCKS:=miservice customer appconfigs
ENV_CFG = /dev/mtd6 0x00000 0x1000 0x20000 2
ENV_CFG1 = /dev/mtd7 0x00000 0x1000 0x20000 2

cis$(RESOUCE) = $(IMAGEDIR)/cis.bin
cis$(DATASIZE) = 0x40000
cis$(PGSIZE) = 2k
cis$(COPIES) = $(CIS_COPIES)
cis$(PATSIZE) = 0x140000
cis$(BOOTTAB) = $(ipl$(MTDPART)),$(ipl_cust$(MTDPART)),$(uboot$(MTDPART))
cis$(SYSTAB) = $(key_cust$(MTDPART)),$(logo$(MTDPART)),$(kernel$(MTDPAR
T)),-(UBI)

ipl$(RESOUCE) = $(PROJ_ROOT)/board/$(CHIP)/boot/ipl/IPL.bin
ipl$(DATASIZE) = 0x20000
ipl$(COPIES) = 3
ipl$(BKCOUNT) = 2
ipl$(PATSIZE) = $(call multiplyhex, $(ipl$(COPIES)), $(ipl$(DATASIZE)))
ipl$(PATCOUNT) = 2
ipl$(MTDPART) = $(ipl$(DATASIZE))@$(cis$(PATSIZE))(IPL0)$(ipl$(BKCOUN
T)),$(ipl$(DATASIZE))(IPL1)$(ipl$(BKCOUNT))
ipl$(OTABLK) = /dev/mtd0 /dev/mtd1

ipl_cust$(RESOUCE) = $(PROJ_ROOT)/board/$(CHIP)/boot/ipl/IPL_CUST.bin
ipl_cust$(DATASIZE) = 0x20000
ipl_cust$(COPIES) = 3
ipl_cust$(BKCOUNT) = 2
ipl_cust$(PATSIZE) = $(call multiplyhex, $(ipl_cust$(COPIES)), $(ipl_cust
$(DATASIZE)))
ipl_cust$(PATCOUNT) = 2
ipl_cust$(MTDPART) = $(ipl_cust$(DATASIZE))(IPL_CUST0)$(ipl_cust$(BKCOUN
T)),$(ipl_cust$(DATASIZE))(IPL_CUST1)$(ipl_cust$(BKCOUNT))
ipl_cust$(OTABLK) = /dev/mtd2 /dev/mtd3

1

2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28

29
30
31
32
33
34
35

36
37

38
39

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

13

uboot$(RESOUCE) = $(PROJ_ROOT)/board/$(CHIP)/boot/$(FLASH_TYPE)/uboot/u-bo
ot_$(FLASH_TYPE).xz.img.bin
uboot$(DATASIZE) = 0x40000
uboot$(COPIES) = 3
uboot$(BKCOUNT) = 4
uboot$(PATSIZE) = $(call multiplyhex, $(uboot$(COPIES)), $(uboot$(DATASIZ
E)))
uboot$(PATCOUNT) = 2
uboot$(MTDPART) =$(uboot$(DATASIZE))(UBOOT0)$(uboot$(BKCOUNT)),$(uboot$(DA
TASIZE))(UBOOT1)$(uboot$(BKCOUNT)),0x20000(ENV0)1,0x20000(ENV1)1
uboot$(OTABLK) = /dev/mtd4 /dev/mtd5

wifi24mclkcmd = mw 1f001cc0 11
wifirstoffcmd = gpio out 71 0
wifirstoncmd = gpio out 71 1

key_cust$(PATSIZE) = 0x20000
key_cust$(MTDPART) = $(key_cust$(PATSIZE))(KEY_CUST)

logo$(RESOUCE) = $(IMAGEDIR)/logo
logo$(PATSIZE) = 0x60000
logo$(MTDPART) = $(logo$(PATSIZE))(LOGO)
logo$(OTABLK) = /dev/mtd9

kernel$(RESOUCE) = $(PROJ_ROOT)/release/$(PRODUCT)/$(CHIP)/$(BOARD)/$(TO
OLCHAIN)/$(TOOLCHAIN_VERSION)/bin/kernel/$(FLASH_TYPE)/uImage.xz
kernel$(PATSIZE) = 0x500000
kernel$(BOOTENV) = $(KERNEL_BOOT_ENV)
kernel$(MTDPART) = $(kernel$(PATSIZE))(KERNEL),$(kernel$(PATSIZE))(RECOV
ERY)
kernel$(OTABLK) = /dev/mtd10

rootfs$(RESOUCE) = $(OUTPUTDIR)/rootfs
rootfs$(FSTYPE) = ubifs
rootfs$(PATSIZE) = 0x6200000
rootfs$(BOOTENV) = console=ttyS0,115200 ubi.mtd=UBI,2048 root=ubi:rootf
s rw rootfstype=ubifs init=/linuxrc rootwait=1

miservice$(RESOUCE) = $(OUTPUTDIR)/miservice/config
miservice$(FSTYPE) = ubifs
miservice$(PATSIZE) = 0xA00000
miservice$(MOUNTTG) = /config
miservice$(MOUNTPT) = ubi0:miservice
miservice$(OPTIONS) = rw
miservice$(OTABLK) = /dev/ubi0_1

customer$(RESOUCE) = $(OUTPUTDIR)/customer
customer$(FSTYPE) = ubifs

40

41
42
43
44

45
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64

65
66
67
68
69
70

71
72
73
74
75
76
77
78
79
80
81

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

14

CIS： SPI-NAND 独有的分区，保存在 flash 0 地址的位置，它包含两部分内容，一部分是 spinand

info，保存 spinand 的一 些基本信息，例如 block page count、block count 等，这些信息会根据 spi

nand 的种类而改变，另一部分是 partinifo，保 存的分区信息，这些信息都是给 rom code 读取的，

rom code 通过读取正确的 spinand 参数和分区信息，从而知道 IPL 的位置把整个系统跑起来。

IPL: IPL 分区的作用与 SPI-NOR 分区一样，但是从上图可知，IPL 在 spi-nand 上保存了六份，每个

block 一份，目的是为

了防止坏块而做的备份。

IPL_CUS： 作用同 SPI-NOR，会有两个分区，IPL_CUS0, IPL_CUS1,每个分区中各三份 IPL_CUS 的

data。

UBOOT： UBOOT 的二进制文件存放分区, 会有两个分区，每个分区中一份 data。

ENV： UBOOT 的环境变量存放分区。

KERNEL：存放内核的二进制文件。

LOGO: 在 NVR 设备上会使用，存放的是开机 logo 相关的配置。

ROOTFS： rootfs配置

UBI: UBI的内容在上图分区表中不会显示出来，UBI中会创建多个ubifs格式的子分区，客户可以根据需要

自行创建。Spinand 的 miservice 分区就是放在 UBI 中。

以上是 BOOT 相关的分区信息，这部分无法任意修改。

1.2. CUSTOMER_TAILOR

customer$(PATSIZE) = 0x6500000
customer$(MOUNTTG) = /customer
customer$(MOUNTPT) = ubi0:customer
customer$(OPTIONS) = rw
customer$(OTABLK) = /dev/ubi0_2

appconfigs$(RESOUCE) = $(OUTPUTDIR)/appconfigs
appconfigs$(FSTYPE) = ubifs
appconfigs$(PATSIZE) = 0x400000
appconfigs$(MOUNTTG) = /appconfigs
appconfigs$(MOUNTPT) = ubi0:appconfigs
appconfigs$(OPTIONS) = rw
appconfigs$(OTABLK) = /dev/ubi0_3

8283
84
85
86
87
88
89
90
91
92
93
94
95

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

15

vi project/release/customer_tailor/nvr_i2m_display_glibc_tailor.mk1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

16

这个文件是关于一些内核模块的开关和APP的配置。比如interface_wlan，在构建rootfs时会根据它是否

enable来加入wifi功能：

include $(PROJ_ROOT)/release/customer_tailor/nvr_default.mk
#interface_ai:=disable
#interface_ao:=disable
#interface_gfx:=disable
interface_hdmi:=disable
#interface_divp:=disable
#interface_disp:=disable
#interface_panel:=disable
interface_rgn:=disable
interface_shadow:=disable
interface_uac:=disable
interface_vdf:=disable
interface_vdisp:=disable
interface_vdec:=enable
interface_venc:=enable
interface_wlan:=enable

misc_fbdev:=enable
#verify_zk_full_security:=enable
#mhal
#mhal_aio:=disable
mhal_csi:=disable
#mhal_disp:=disable
#mhal_divp:=disable
mhal_isp:=disable
mhal_ispalgo:=disable
mhal_ispmid:=disable
mhal_ldc:=disable
mhal_mload:=disable
#mhal_panel:=disable
#mhal_rgn:=disable
mhal_sensorif:=disable
#mhal_venc:=disable
mhal_vif:=disable
mhal_vpe:=disable
mhal_hdmitx:=disable

verify_jpeg2disp=enable
verify_disp_init=disable

interface_alsa=enable

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

17

我们

内存大小问题

Flash分区大小问题

buildroot文件系统定制

ETH

WIFI

LCD

音频配置

vi project/image/configs/i2m/rootfs.mk1

Plain Text 复制代码

boot/include/configs/infinity2m.h1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

18

UART

GPIO

PWM

I2C

SPI

RTC的配置

WATCHDOG的配置

QT移植

母片制作

可以看到，启动logo图片BOOTLOGO_FILE应该放在project/board/ini/misc/目录下：

我们在配置bootlogo的时候，需要指定屏幕的型号，才能有效，而DISP_OUT_NAME是指定的屏幕型

号，而disp_data_main.c设置对应的屏幕型号

在project/image/makefiletools/bin/dispcfggen用于初始化屏幕

而DISP_OUT_NAME作为参数传递给dispcfggen，而dispcfggen由

project/image/makefiletools/src/rawgenerator/disp_data_main.c生成

1.3. BOOTLOGO_FILE

1.4. DISP_OUT_NAME

vi project/image/makefiletools/src/rawgenerator/disp_data_main.c1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

19

进入Linux系统，使用free -m 命令发现内存小于128M（SSD202的内存大小为128M）：

了解到内存大小分配给了MMA、Linux系统和一部分reserved（这部分一般不用去修改），即：

DDR total memory = linux memory(cat /proc/meminfo的MemTotal) + mma(mma_heap_name0 +

MMU_MMA) + kernel reserved

在Uboot中，可以看到MMA的大小默认设置为0x1000000=16M：

因此通过减少MMA的大小来增加Linux系统可用内存，我们先在uboot下修改MMA大小，验证上面的公

式：

我们可以直接在：project/configs/nvr/i2m/8.2.1/spinand.glibc.011a.128修改我们的MMA之

内存大小的问题

vi project/configs/nvr/i2m/8.2.1/spinand.glibc.011a.1281

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

20

这里我们所减了6M，对应的linux的内存就增加了6M。

同时，可以了解到kernel reserved的大小为128M-110-10M=8M。这一部分应该等于0x80000000

（128M）- 0x7800000。

使用df -h 查看分区的情况，我们可以看到rootfs的内存有85.6M：

这个分区是针对SSD202的256M Flash的可以在：

project/image/configs/i2m/spinand.ubifs.p2.partition.config_256M查看到分区的情况，注意在脚本

里spinand.ubifs.p2.partition.config_256M配置会覆盖spinand.ubifs.p2.partition.config，所以想要修

改的话，应该在spinand.ubifs.p2.partition.config_256M修改：

Flash分区大小问题

地址范围 0x0-0x6E00000
 0x6E00000-

0x7800000

0x7800000-

0x8000000

作用 linux（110M）
 mma（10M）
 kernel resverved

（8M）

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

21

cis$(RESOUCE) = $(IMAGEDIR)/cis.bin
cis$(DATASIZE) = 0x40000
cis$(PGSIZE) = 2k
cis$(COPIES) = $(CIS_COPIES)
cis$(PATSIZE) = 0x140000
cis$(BOOTTAB) = $(ipl$(MTDPART)),$(ipl_cust$(MTDPART)),$(uboot$(MTDPART))
cis$(SYSTAB) = $(key_cust$(MTDPART)),$(logo$(MTDPART)),$(kernel$(MTDPAR
T)),-(UBI)

ipl$(RESOUCE) = $(PROJ_ROOT)/board/$(CHIP)/boot/ipl/IPL.bin
ipl$(DATASIZE) = 0x20000
ipl$(COPIES) = 3
ipl$(BKCOUNT) = 2
ipl$(PATSIZE) = $(call multiplyhex, $(ipl$(COPIES)), $(ipl$(DATASIZE)))
ipl$(PATCOUNT) = 2
ipl$(MTDPART) = $(ipl$(DATASIZE))@$(cis$(PATSIZE))(IPL0)$(ipl$(BKCOUN
T)),$(ipl$(DATASIZE))(IPL1)$(ipl$(BKCOUNT))
ipl$(OTABLK) = /dev/mtd0 /dev/mtd1

ipl_cust$(RESOUCE) = $(PROJ_ROOT)/board/$(CHIP)/boot/ipl/IPL_CUST.bin
ipl_cust$(DATASIZE) = 0x20000
ipl_cust$(COPIES) = 3
ipl_cust$(BKCOUNT) = 2
ipl_cust$(PATSIZE) = $(call multiplyhex, $(ipl_cust$(COPIES)), $(ipl_cust
$(DATASIZE)))
ipl_cust$(PATCOUNT) = 2
ipl_cust$(MTDPART) = $(ipl_cust$(DATASIZE))(IPL_CUST0)$(ipl_cust$(BKCOUN
T)),$(ipl_cust$(DATASIZE))(IPL_CUST1)$(ipl_cust$(BKCOUNT))
ipl_cust$(OTABLK) = /dev/mtd2 /dev/mtd3

uboot$(RESOUCE) = $(PROJ_ROOT)/board/$(CHIP)/boot/$(FLASH_TYPE)/uboot/u-bo
ot_$(FLASH_TYPE).xz.img.bin
uboot$(DATASIZE) = 0x40000
uboot$(COPIES) = 3
uboot$(BKCOUNT) = 4
uboot$(PATSIZE) = $(call multiplyhex, $(uboot$(COPIES)), $(uboot$(DATASIZ
E)))
uboot$(PATCOUNT) = 2
uboot$(MTDPART) =$(uboot$(DATASIZE))(UBOOT0)$(uboot$(BKCOUNT)),$(uboot$(DA
TASIZE))(UBOOT1)$(uboot$(BKCOUNT)),0x20000(ENV0)1,0x20000(ENV1)1
uboot$(OTABLK) = /dev/mtd4 /dev/mtd5

wifi24mclkcmd = mw 1f001cc0 11
wifirstoffcmd = gpio out 71 0
wifirstoncmd = gpio out 71 1

1
2
3
4
5
6
7

8
9
10
11
12
13
14
15

16
17
18
19
20
21
22

23
24

25
26
27

28
29
30
31

32
33

34
35
36
37
38

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

22

key_cust$(PATSIZE) = 0x20000
key_cust$(MTDPART) = $(key_cust$(PATSIZE))(KEY_CUST)

logo$(RESOUCE) = $(IMAGEDIR)/logo
logo$(PATSIZE) = 0x60000
logo$(MTDPART) = $(logo$(PATSIZE))(LOGO)
logo$(OTABLK) = /dev/mtd9

kernel$(RESOUCE) = $(PROJ_ROOT)/release/$(PRODUCT)/$(CHIP)/$(BOARD)/$(TO
OLCHAIN)/$(TOOLCHAIN_VERSION)/bin/kernel/$(FLASH_TYPE)/uImage.xz
kernel$(PATSIZE) = 0x500000
kernel$(BOOTENV) = $(KERNEL_BOOT_ENV)
kernel$(MTDPART) = $(kernel$(PATSIZE))(KERNEL),$(kernel$(PATSIZE))(RECOV
ERY)
kernel$(OTABLK) = /dev/mtd10

rootfs$(RESOUCE) = $(OUTPUTDIR)/rootfs
rootfs$(FSTYPE) = ubifs
rootfs$(PATSIZE) = 0x6200000
rootfs$(BOOTENV) = console=ttyS0,115200 ubi.mtd=UBI,2048 root=ubi:rootf
s rw rootfstype=ubifs init=/linuxrc rootwait=1

miservice$(RESOUCE) = $(OUTPUTDIR)/miservice/config
miservice$(FSTYPE) = ubifs
miservice$(PATSIZE) = 0xA00000
miservice$(MOUNTTG) = /config
miservice$(MOUNTPT) = ubi0:miservice
miservice$(OPTIONS) = rw
miservice$(OTABLK) = /dev/ubi0_1

customer$(RESOUCE) = $(OUTPUTDIR)/customer
customer$(FSTYPE) = ubifs
customer$(PATSIZE) = 0x6500000
customer$(MOUNTTG) = /customer
customer$(MOUNTPT) = ubi0:customer
customer$(OPTIONS) = rw
customer$(OTABLK) = /dev/ubi0_2

appconfigs$(RESOUCE) = $(OUTPUTDIR)/appconfigs
appconfigs$(FSTYPE) = ubifs
appconfigs$(PATSIZE) = 0x400000
appconfigs$(MOUNTTG) = /appconfigs
appconfigs$(MOUNTPT) = ubi0:appconfigs
appconfigs$(OPTIONS) = rw
appconfigs$(OTABLK) = /dev/ubi0_3

3940
41
42
43
44
45
46
47
48

49
50
51

52
53
54
55
56
57

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

23

不难发现，虽然分区表给rootfs中分配的了98M，但用df -h 看到只有85.6M，这是因为一部分用于分区

了，就好像我们买了32G的U盘，其实真实的内存确实少了很多。

我们可以对其进行修改，来修改分区的大小，这里以rootfs为例，这边把98M->88M，缩小10M，也就

是修改为0x5800000。修改后，我们看到我们开发板的内rootfs将近缩小了10M

分区
 大小

cis
 0x40000=256K

ipl
 0x20000=128K

ipl_cust
 0x20000=128K

uboot
 0x40000=256K

key_cust
 0x20000=128K

logo
 0x60000=384K

kernel
 0x500000=5M

rootfs
 0x6200000=98M

miservice
 0xA00000=10M

customer
 0x6500000=101M

appconfigs
 0x400000=4M

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

24

系统起来后，我想创建一个文件，发现失败了，原因是文件系统是只读的：

我们可以在project/image/configs/i2m/spinand.ubifs.p2.partition.config_256M修改为

如果我把ro改成rw，应该就可以把rootfs设置为可读可写属性了：

我们可以使用buildroot去定制一些我们所需要的功能，如添加wifi功能，wifi自启动连接，添加界面账号

密码等功能。首先去我们的官网下载我们的buildroothttps://buildroot.org/downloads/

 文件系统只读问题

buildroot文件系统定制
深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

https://buildroot.org/downloads/

25

解压并进入buildroot进行配置

我么们根据ssd202来进行配置：

vi buildroot-2023.051

Plain Text 复制代码

ARCH=arm make menuconfig1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

26

上面是基础配置，如果需要配置登录的密码设置，我们进入System configuration在子菜单中，找到

Enable root login with password选项选中，然后我们在 root password上填写我们的密码即可。

等编译完成之后，他会把编译好的rootfs.tar放到output/images/下。

│ │Target options --->
│ │ Target Architecture (ARM (little endian)) --->
│ │ Target Architecture Variant (cortex-A7) --->
│ │ Floating point strategy (NEON) --->

│ │Toolchain --->
│ │ Toolchain type (External toolchain) --->

│ │ *** Toolchain External Options ***

│ │ Toolchain (Custom toolchain) --->
│ │ (/home/cainiaocl/work/SSD20X/PurPle-Pi-R1/toolchain/gcc-arm-
8.2-2018.08-x86_64-arm-linux-gnueabihf/
│ │ (arm-linux-gnueabihf) Toolchain prefix

│ │ External toolchain gcc version (8.x) --->

│ │ External toolchain kernel headers series (4.18.x) --->

│ │ External toolchain C library (glibc) --->

│ │ 	 	 [*] Toolchain has SSP support? (NEW)

│ │ 	 	 [*] Toolchain has SSP strong support? (NEW)

│ │ 	 	 [*] Toolchain has RPC support? (NEW)

│ │ 	 	 [*] Toolchain has C++ support?

1
2
3
4
5
6
7

8

9
10

11

12

13

14

15

16

17

18

19

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

27

，现在我们把buildroot生成的rootfs.tar替换我们的project/image/rootfs/rootfs.tar.gz即可.但这里需要

注意的是，buildroot生成的rootfs.tar解压后是散包，没有套一层rootfs目录，但是我们项目下的

rootfs.tar.gz却是由套一层rootfs，所以我们先把buildroot生成的rootfs.tar套一层目录：

然后再替换我们项目想的rootfs.tar.gz:

替换完成后，我们编译一下固件

我们这款ssd202的开发板，已经有配置快速启动模式的的脚本了

快速启动模式fastboot

mkdir rootfs
tar -xvf rootfs.tar -C rootfs/
tar -cvf rootfs.tar.gz ./rootfs

1
2
3

Plain Text 复制代码

cp rootfs.tar.gz ../../../project/image/rootfs/1

Plain Text 复制代码

./Release_to_customer.sh -f nand -p ssd202 -m 2561

Plain Text 复制代码

vi Release_to_customer.sh1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

28

我们只需要在运行脚本的时候添加：

同时，切换fastnoots需要修改下：

更新启动后，可以看到启动过程跳过了 uboot。

关闭网络功能，也能加快开机时间：

LCD配置

./Release_to_customer.sh -f nand -p ssd202 -q fastboot -m 2561

Plain Text 复制代码

vi project/image/configs/i2m/rootfs_fastboot.mk1

Plain Text 复制代码

setenv autoestar 0
saveenv

1
2

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

29

假设我们配置的屏幕信息是：720x1280，60fps、RGB888像素格式、4lane

我们需要配置MIPI屏幕，从原理图可以看出我们使用到的引脚是TTL1~15,且用到的数据时钟线是

TTL6~15也就是D0P/N、D1P/N、D2P/N、D3P/N、CKP/N，这4个lane和1clk：

kernel配置(dts配置)

点屏流程

dts的配置

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

30

根据原理图可以看出，我们需要把屏幕配置成MIPI_MODE_1

需要把引脚配置成MIPI模式：

vi kernel/arch/arm/boot/dts/infinity2m-ssc011a-s01a-padmux-rgb565-rmii-doub
lenet.dtsi

1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

31

修改屏幕分辨率为720x1280

自启动的话，把jpeg2disp的enable，并且把disp_init给disable

1）我们配置屏参文件，我们需要知道屏幕的这些信息：

1. 分辨率：720x1280

project的配置

jpeg2disp的配置

配置屏参文件

 project/board/i2m/SSC011A-S01A/config/fbdev.ini1

Plain Text 复制代码

vi project/release/customer_tailor/nvr_i2m_display_glibc_tailor.mk1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

32

2. HSyncWidth：30 ；HSyncBackPorch：30 ；HSyncFrontPorch：60

3. VSyncWidth：4 ；VSyncBackPorch：12 ；HVyncFrontPorch：18

4. 帧：60HZ

5. date-lane：4

6. 像素格式：rgb888

2）打开我们的屏参文件，根据我们得到分辨率以及屏幕时钟等这些信息，直接这里替换：

3）像素时钟和数据lane直接替换，

4）如果在你的数据lane中，屏幕接口上的DxP和DxN是跟开发板上的DxP和DxN是相反的话，我们修改

这个为2,2,2,2,2,

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

33

5）配置MI_PANEL_ChannelSwapType_e

在我们结构体中我们通道的顺序就是这样，从上到下clk、lane3、Lane2、Lane1、Lane0。

需要参考实际的硬件连接配置：

我们TTL对应的枚举情况：

1. typedef struct
2. {
5. MI_PANEL_ChannelSwapType_e eCh0; //--> CLK 栏位(CKN/P)
6. MI_PANEL_ChannelSwapType_e eCh1; //--> Lane3栏位(D3N/P)
7. MI_PANEL_ChannelSwapType_e eCh2; //--> Lane2栏位(D2N/P)
8. MI_PANEL_ChannelSwapType_e eCh3; //--> Lane1栏位(D1N/P)
9. MI_PANEL_ChannelSwapType_e eCh4; //--> Lane0栏位(D0N/P)
10. }MI_PANEL_ParamConfig_t;

1
2
3
4
5
6
7
8

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

34

所以，从原理图看：

我们的CKN/P对应的是TTL10和TTL11，对应的是E_MI_PNL_CH_SWAP_2，所以第一个枚举值是2，

我们的D3N/P对应的是TTL14和TTL15，对应的是E_MI_PNL_CH_SWAP_4，所以第一个枚举值是4

我们的D2N/P对应的是TTL12和TTL13，对应的是E_MI_PNL_CH_SWAP_3，所以第一个枚举值是3，

我们的D1N/P对应的是TTL8和TTL9，对应的是E_MI_PNL_CH_SWAP_1，所以第一个枚举值是1，

我们的D0N/P对应的是TTL6和TTL7，对应的是E_MI_PNL_CH_SWAP_0，所以第一个枚举值是0，

参考屏参文件如下：

芯片内部默认情况下对应的pin是：
Lane0对应的是PAD_TTL6/7 → E_MI_PNL_CH_SWAP_0 （对应枚举值是0）
Lane1对应的是PAD_TTL8/9 → E_MI_PNL_CH_SWAP_1 （对应枚举值是1）
Lane2对应的是PAD_TTL12/13 → E_MI_PNL_CH_SWAP_3 （对应枚举值是3）
Lane3对应的是PAD_TTL14/15 → E_MI_PNL_CH_SWAP_4 （对应枚举值是4）
Clk对应的是PAD_TTL10/11 → E_MI_PNL_CH_SWAP_2 （对应枚举值是2）

1
2
3
4
5
6

Plain Text 复制代码

m_ucCl	 	 	 	 Clk lane selection(default:2) 0:select chn0 1:select chn1
2:select chn2 3:select chn3 4:select chn4
m_ucDataLane0	data lane0 selection(default:4) 0:select chn0 1:select chn1
2:select chn2 3:select chn3 4:select chn4
m_ucDataLane1	data lane1 selection(default:3) 0:select chn0 1:select chn1
2:select chn2 3:select chn3 4:select chn4
m_ucDataLane2	data lane2 selection(default:1) 0:select chn0 1:select chn1
2:select chn2 3:select chn3 4:select chn4
m_ucDataLane3	data lane3 selection(default:0) 0:select chn0 1:select chn1
2:select chn2 3:select chn3 4:select chn4

1

2

3

4

5

Plain Text 复制代码

(MI_PANEL_ChannelSwapType_e)2,
(MI_PANEL_ChannelSwapType_e)4,
(MI_PANEL_ChannelSwapType_e)3,
(MI_PANEL_ChannelSwapType_e)1,
(MI_PANEL_ChannelSwapType_e)0,

1
2
3
4
5

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

35

#include "mi_panel_datatype.h"

#define FLAG_DELAY 0xFE
#define FLAG_END_OF_TABLE 0xFF // END OF REGISTERS MARKER

#define HPW (8)
#define HBP (24)
#define HFP (16)
#define VPW (68)
#define VBP (120)
#define VFP (88)

#define FPS (60)
#define HDA (720)
#define VDA (1280)

MI_PANEL_ParamConfig_t stPanelParam =
{
 "WT070BM24_800x1280_60", // const char *m_pPanelName;
///< PanelName
 0, //MS_U8 m_bPanelDither :1; ///< PANEL_DITHER, kee
p the setting
 E_MI_PNL_LINK_MIPI_DSI, //MHAL_DISP_ApiPnlLinkType_e m_ePanelLinkTyp
e :4; ///< PANEL_LINK

 ///
 // Board related setting
 ///
 1, //MS_U8 m_bPanelDualPort :1; ///< VOP_21[8], MOD_4
A[1], PANEL_DUAL_PORT, refer to m_bPanelDoubleClk
 0, //MS_U8 m_bPanelSwapPort :1; ///< MOD_4A[0],
 PANEL_SWAP_PORT, refer to "LVDS output app note" A/B channel swa
p
 0, //MS_U8 m_bPanelSwapOdd_ML :1; ///< PANEL_SWAP_ODD_M
L
 0, //MS_U8 m_bPanelSwapEven_ML :1; ///< PANEL_SWAP_EVEN_
ML
 0, //MS_U8 m_bPanelSwapOdd_RB :1; ///< PANEL_SWAP_ODD_R
B
 0, //MS_U8 m_bPanelSwapEven_RB :1; ///< PANEL_SWAP_EVEN_
RB

 0, //MS_U8 m_bPanelSwapLVDS_POL :1; ///< MOD_40[5], PANEL
_SWAP_LVDS_POL, for differential P/N swap

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21

22

23
24
25
26
27

28

29

30

31

32

33
34

U5505HA-WA0-720x1280.h Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

36

 0, //MS_U8 m_bPanelSwapLVDS_CH :1; ///< MOD_40[6], PANEL
_SWAP_LVDS_CH, for pair swap
 0, //MS_U8 m_bPanelPDP10BIT :1; ///< MOD_40[3], PANEL
_PDP_10BIT ,for pair swap
 1, //MS_U8 m_bPanelLVDS_TI_MODE :1; ///< MOD_40[2], PANEL
_LVDS_TI_MODE, refer to "LVDS output app note"

 ///
 // For TTL Only
 ///
 0, //MS_U8 m_ucPanelDCLKDelay; ///< PANEL_DCLK_DELAY
 0, //MS_U8 m_bPanelInvDCLK :1; ///< MOD_4A[4],
 PANEL_INV_DCLK
 0, //MS_U8 m_bPanelInvDE :1; ///< MOD_4A[2],
 PANEL_INV_DE
 0, //MS_U8 m_bPanelInvHSync :1; ///< MOD_4A[12],
 PANEL_INV_HSYNC
 0, //MS_U8 m_bPanelInvVSync :1; ///< MOD_4A[3],
 PANEL_INV_VSYNC

 ///
 // Output driving current setting
 ///
 // driving current setting (0x00=4mA, 0x01=6mA, 0x02=8mA, 0x03=12mA)
 1, //MS_U8 m_ucPanelDCKLCurrent; ///< define PANEL_DCL
K_CURRENT
 1, //MS_U8 m_ucPanelDECurrent; ///< define PANEL_DE_
CURRENT
 1, //MS_U8 m_ucPanelODDDataCurrent; ///< define PANEL_ODD
_DATA_CURRENT
 1, //MS_U8 m_ucPanelEvenDataCurrent; ///< define PANEL_EVE
N_DATA_CURRENT

 ///
 // panel on/off timing
 ///
 30, //MS_U16 m_wPanelOnTiming1; ///< time between pa
nel & data while turn on power
 400, //MS_U16 m_wPanelOnTiming2; ///< time between d
ata & back light while turn on power
 80, //MS_U16 m_wPanelOffTiming1; ///< time between ba
ck light & data while turn off power
 30, //MS_U16 m_wPanelOffTiming2; ///< time between da
ta & panel while turn off power

 ///
 // panel timing spec.
 ///

35

36

37

38
39
40
41
42
43

44

45

46

47
48
49
50
51
52

53

54

55

56
57
58
59
60

61

62

63

64
65
66
67

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

37

 // sync related
 HPW, //MS_U8 m_ucPanelHSyncWidth; ///< VOP_01[7:0], P
ANEL_HSYNC_WIDTH
 HBP, //MS_U8 m_ucPanelHSyncBackPorch; ///< PANEL_HSYNC_BA
CK_PORCH, no register setting, provide value for query only

 ///< not support Manuel VSy
nc Start/End now
 ///< VOP_02[10:0] VSync sta
rt = Vtt - VBackPorch - VSyncWidth
 ///< VOP_03[10:0] VSync en
d = Vtt - VBackPorch
 VPW, //MS_U8 m_ucPanelVSyncWidth; ///< define PANEL_V
SYNC_WIDTH
 VBP, //MS_U8 m_ucPanelVBackPorch; ///< define PANEL_V
SYNC_BACK_PORCH

 // DE related
 (HPW+HBP), //MS_U16 m_wPanelHStart; ///< VOP_04[1
1:0], PANEL_HSTART, DE H Start (PANEL_HSYNC_WIDTH + PANEL_HSYNC_BACK_PORC
H)
 (VPW+VBP), //MS_U16 m_wPanelVStart; ///< VOP_06[1
1:0], PANEL_VSTART, DE V Start
 HDA, //MS_U16 m_wPanelWidth; ///< PANEL_WIDTH, D
E width (VOP_05[11:0] = HEnd = HStart + Width - 1)
 VDA, //MS_U16 m_wPanelHeight; ///< PANEL_HEIGHT, D
E height (VOP_07[11:0], = Vend = VStart + Height - 1)

 // DClk related
 0, //MS_U16 m_wPanelMaxHTotal; ///< PANEL_MAX_HTOTA
L. Reserved for future using.
 (HDA+HPW+HBP+HFP), //MS_U16 m_wPanelHTotal; ///<
VOP_0C[11:0], PANEL_HTOTAL
 0, //MS_U16 m_wPanelMinHTotal; ///< PANEL_MIN_HTOTA
L. Reserved for future using.

 0, //MS_U16 m_wPanelMaxVTotal; ///< PANEL_MAX_VTOTA
L. Reserved for future using.
 (VDA+VPW+VBP+VFP), //MS_U16 m_wPanelVTotal; ///<
VOP_0D[11:0], PANEL_VTOTAL
 0, //MS_U16 m_wPanelMinVTotal; ///< PANEL_MIN_VTOTA
L. Reserved for future using.

 0, //MS_U8 m_dwPanelMaxDCLK; ///< PANEL_MAX_DCLK.
Reserved for future using.
 ((unsigned long)(VDA+VPW+VBP+VFP)*(HDA+HPW+HBP+HFP)*FPS/1000000), //
MS_U8 m_dwPanelDCLK; ///< LPLL_0F[23:0], PANEL_DCLK
 ,{0x3100_10[7:0], 0x3100_0F[15:0]}

6869

70

71
72

73

74

75

76

77
78
79

80

81

82

83
84
85

86

87

88
89

90

91

92
93

94

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

38

 0, //MS_U8 m_dwPanelMinDCLK; ///< PANEL_MIN_DCLK.
Reserved for future using.
 ///< spread spectrum
 0, //MS_U16 m_wSpreadSpectrumStep; ///< move to board de
fine, no use now.
 0, //MS_U16 m_wSpreadSpectrumSpan; ///< move to board de
fine, no use now.

 160, //MS_U8 m_ucDimmingCtl; ///< Initial Dimmin
g Value
 255, //MS_U8 m_ucMaxPWMVal; ///< Max Dimming Va
lue
 80, //MS_U8 m_ucMinPWMVal; ///< Min Dimming Val
ue

 0, //MS_U8 m_bPanelDeinterMode :1; ///< define PANEL_DEI
NTER_MODE, no use now
 E_MI_PNL_ASPECT_RATIO_WIDE, //MHAL_DISP_PnlAspectRatio_e m_ucPanelAs
pectRatio; ///< Panel Aspect Ratio, provide information to upper layer a
pplication for aspect ratio setting.
 /*
 *
 * Board related params
 *
 * If a board (like BD_MST064C_D01A_S) swap LVDS TX polarity
 * : This polarity swap value =
 * (LVDS_PN_SWAP_H<<8) | LVDS_PN_SWAP_L from board define,
 * Otherwise
 * : The value shall set to 0.
 */
 0, //MS_U16 m_u16LVDSTxSwapValue;
 E_MI_PNL_TI_8BIT_MODE, //MHAL_DISP_ApiPnlTiBitMode_e m_ucTiBitMode;
 ///< MOD_4B[1:0], refer to "LVDS output app note"
 E_MI_PNL_OUTPUT_8BIT_MODE, //MHAL_DISP_ApiPnlOutPutFormatBitMode_e m
_ucOutputFormatBitMode;

 0, //MS_U8 m_bPanelSwapOdd_RG :1; ///< define PANEL_SWA
P_ODD_RG
 0, //MS_U8 m_bPanelSwapEven_RG :1; ///< define PANEL_SWA
P_EVEN_RG
 0, //MS_U8 m_bPanelSwapOdd_GB :1; ///< define PANEL_SWA
P_ODD_GB
 0, //MS_U8 m_bPanelSwapEven_GB :1; ///< define PANEL_SWA
P_EVEN_GB

 /**
 * Others
 */

95

96
97

98

99
100

101

102

103
104

105

106
107
108
109
110
111
112
113
114
115
116
117

118

119
120

121

122

123

124
125
126
127

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

39

我们要根据原理图，找出我们的LCD_RST和PWM_RST，这两个参数是背光和屏幕的引脚，通过使用该

引脚才会顺利的点亮我们的屏幕。通过我们的原理图，我们可以看出对应的引脚号是LCD_RST—

>GPIO86和PWM_RST—>GPIO4

所以，在我们的/home/cainiaocl/work/SSD20X/PurPle-Pi-

R1/sdk/verify/application/jpeg2disp/run.sh里配置我们的开机自启动屏幕：

我们如果想修改我们的生成图片的执行文件，我们就在：/home/cainiaocl/work/SSD20X/PurPle-Pi-

R1/sdk/verify/application/jpeg2disp/src/makefile下修改这个变量，更改我们的名称

jpegdisp的配置

 1, //MS_U8 m_bPanelDoubleClk :1; ///< LPLL_03[7], d
efine Double Clock ,LVDS dual mode
 0x001c848e, //MS_U32 m_dwPanelMaxSET; ///< defi
ne PANEL_MAX_SET
 0x0018eb59, //MS_U32 m_dwPanelMinSET; ///< defi
ne PANEL_MIN_SET
 E_MI_PNL_CHG_VTOTAL, //MHAL_DISP_ApiPnlOutTimingMode_e m_ucOutTiming

128

129

130

131

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

40

相对应的我们需要在/home/cainiaocl/work/SSD20X/PurPle-Pi-

R1/sdk/verify/application/jpeg2disp/image.mk下，修改对应的执行文件的名称，以及我们的图片名称

我们的图片文件应该放在：/home/cainiaocl/work/SSD20X/PurPle-Pi-

R1/sdk/verify/application/jpeg2disp/res

同时，我们把屏参文件放到该目录下：/home/cainiaocl/work/SSD20X/PurPle-Pi-

R1/sdk/verify/application/jpeg2disp/src

并srcsstardisp.c中把自己屏参文件添加上去同时屏蔽其他的屏参文件

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

41

重新编译一下，即可

1）报错提示找不到-ljpeg，即libjpeg.so，但是在找到libjpeg.so.7：

报错提示找不到-ljpeg，即libjpeg.so，但是在找到libjpeg.so.7：

 做一个软链接即可：

重新编译并更新固件：

常见问题

./Release_to_customer.sh -f nand -p ssd2011

Plain Text 复制代码

ls sdk/verify/application/jpeg2disp/lib1

Plain Text 复制代码

cd sdk/verify/application/jpeg2disp/lib
ln -s libjpeg.so.7 libjpeg.so
ln -s libz.so.1 libz.so

1
2
3

Plain Text 复制代码
深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

42

2）屏幕不亮的解决办法：

第一，先检查背光是否有亮，没有亮就先打开背光，如果背光亮了没有显示图片，就把屏幕的LCD_RST

引脚给电，顺便测量LCD_RST和PWM_RST是否有电压能被控制，如果都没有问题，就查看自己的dts的

引脚模式是否有配置好。

第二，如果都还是不亮，查看是否有上电时序，有些屏幕有特殊要求，需要上电时序才会复位正确才能

亮屏

第三，在看看 检查开机logo是否有关掉。

第四，可能你的转接线太长导致数据传输不过来也有可能。

第五、分辨率HSyncWidth，HSyncBackPorch，HSyncFrontPorch，VSyncWidth，

VSyncBackPorch，HVyncFrontPorch，帧率，date-lane，像素格式是否正确。

第六、如果都还是有问题，去厂家把屏参对一下是否正确，且再用自检参数试一下，如果还是没反应，

可能出现硬件的问题去排查一下，根据原理图对底板跟转接板的元器件进行检测，是否有电压。

第七、或者你的内核没更新，你使用uname -a 查看一下，最新的编译内核的时间，如果不是最信的，

可能你编译固件的时候出现了内核错误，查看下日志，可能你忽略了。

第八，用示波器测试一下。

第九、如果有屏幕抖动，可能因为延迟或者帧率，适当修改即可。

第十、在调试tp的时候，我们需要通过测量中断脚也就是inr脚，在我们按压屏幕的时候，电压值会发生

变化。或者通过测量各个引脚，是否通电，也就是测量电阻值。

第十一、我们使用bootlogo，切换logo，存在短时间的黑屏：echo 1 >

/sys/class/mstar/mdisp/bootlogo。

第十二、使用该命令查看屏参，看我们的屏参是否没有写好：cat

proc/mi_modules/mi_panel/mi_panel0

第十三、我们进入该文件查看我们的分辨率是否正确：：vi config/fbdev.ini。

第十三、如果涉及纳秒级别的时序要求，需要在uboot，或者kernel上做点屏时序处理，在开发板上，

sleep精确度不高，存在误差，不能实现这个操作。

bootlogo配置

cd -
./Release_to_customer.sh -f nand -p ssd202 -m 256

1
2

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

43

bootlogo配置相对简单，如果我们的屏幕已经点亮，并可以显示图片的话吗，我们需要在原来屏参的基

础上进行修改为适配bootlogo的屏参文件，变动不大只是修改下对应的结构体：

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

44

// #include "mi_panel_datatype.h"

#ifndef SH8601A_454x454_MIPI_BOOTLOGO_H
#define SH8601A_454x454_BOOTLOGO_H

#define FLAG_DELAY 0xFE
#define FLAG_END_OF_TABLE 0xFF // END OF REGISTERS MARKER

#define HPW (30)
#define HBP (30)
#define HFP (60)
#define VPW (4)
#define VBP (12)
#define VFP (18)

#define FPS (60)
#define HDA (720)
#define VDA (1280)

MhalPnlParamConfig_t stPanelParam_U5505HA_WA0_720x1280 =
{
 "U5505HA_WA0_720x1280", // const char *m_pPanelName;
///< PanelName
#if !defined (__aarch64__)
 0,
#endif
	
	 0, //MS_U8 m_bPanelDither :1; ///< PANEL_DITHER, keep
the setting
 E_MHAL_PNL_LINK_MIPI_DSI, //MHAL_DISP_ApiPnlLinkType_e m_ePanelLinkTy
pe :4; ///< PANEL_LINK

 ///
 // Board related setting
 ///
 1, //MS_U8 m_bPanelDualPort :1; ///< VOP_21[8], MOD_4
A[1], PANEL_DUAL_PORT, refer to m_bPanelDoubleClk
 0, //MS_U8 m_bPanelSwapPort :1; ///< MOD_4A[0],
 PANEL_SWAP_PORT, refer to "LVDS output app note" A/B channel swa
p
 0, //MS_U8 m_bPanelSwapOdd_ML :1; ///< PANEL_SWAP_ODD_M
L
 0, //MS_U8 m_bPanelSwapEven_ML :1; ///< PANEL_SWAP_EVEN_
ML

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28

29

30
31
32
33
34

35

36

37

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

45

 0, //MS_U8 m_bPanelSwapOdd_RB :1; ///< PANEL_SWAP_ODD_R
B
 0, //MS_U8 m_bPanelSwapEven_RB :1; ///< PANEL_SWAP_EVEN_
RB

 0, //MS_U8 m_bPanelSwapLVDS_POL :1; ///< MOD_40[5], PANEL
_SWAP_LVDS_POL, for differential P/N swap
 0, //MS_U8 m_bPanelSwapLVDS_CH :1; ///< MOD_40[6], PANEL
_SWAP_LVDS_CH, for pair swap
 0, //MS_U8 m_bPanelPDP10BIT :1; ///< MOD_40[3], PANEL
_PDP_10BIT ,for pair swap
 1, //MS_U8 m_bPanelLVDS_TI_MODE :1; ///< MOD_40[2], PANEL
_LVDS_TI_MODE, refer to "LVDS output app note"

 ///
 // For TTL Only
 ///
 0, //MS_U8 m_ucPanelDCLKDelay; ///< PANEL_DCLK_DELAY
 0, //MS_U8 m_bPanelInvDCLK :1; ///< MOD_4A[4],
 PANEL_INV_DCLK
 0, //MS_U8 m_bPanelInvDE :1; ///< MOD_4A[2],
 PANEL_INV_DE
 0, //MS_U8 m_bPanelInvHSync :1; ///< MOD_4A[12],
 PANEL_INV_HSYNC
 0, //MS_U8 m_bPanelInvVSync :1; ///< MOD_4A[3],
 PANEL_INV_VSYNC

 ///
 // Output driving current setting
 ///
 // driving current setting (0x00=4mA, 0x01=6mA, 0x02=8mA, 0x03=12mA)
 1, //MS_U8 m_ucPanelDCKLCurrent; ///< define PANEL_DCL
K_CURRENT
 1, //MS_U8 m_ucPanelDECurrent; ///< define PANEL_DE_
CURRENT
 1, //MS_U8 m_ucPanelODDDataCurrent; ///< define PANEL_ODD
_DATA_CURRENT
 1, //MS_U8 m_ucPanelEvenDataCurrent; ///< define PANEL_EVE
N_DATA_CURRENT

 ///
 // panel on/off timing
 ///
 30, //MS_U16 m_wPanelOnTiming1; ///< time between pa
nel & data while turn on power
 400, //MS_U16 m_wPanelOnTiming2; ///< time between d
ata & back light while turn on power

38

39

40
41

42

43

44

45
46
47
48
49
50

51

52

53

54
55
56
57
58
59

60

61

62

63
64
65
66
67

68

69

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

46

 80, //MS_U16 m_wPanelOffTiming1; ///< time between ba
ck light & data while turn off power
 30, //MS_U16 m_wPanelOffTiming2; ///< time between da
ta & panel while turn off power

 ///
 // panel timing spec.
 ///
 // sync related
 HPW, //MS_U8 m_ucPanelHSyncWidth; ///< VOP_01[7:0], P
ANEL_HSYNC_WIDTH
 HBP, //MS_U8 m_ucPanelHSyncBackPorch; ///< PANEL_HSYNC_BA
CK_PORCH, no register setting, provide value for query only

 ///< not support Manuel VSy
nc Start/End now
 ///< VOP_02[10:0] VSync sta
rt = Vtt - VBackPorch - VSyncWidth
 ///< VOP_03[10:0] VSync en
d = Vtt - VBackPorch
 VPW, //MS_U8 m_ucPanelVSyncWidth; ///< define PANEL_V
SYNC_WIDTH
 VBP, //MS_U8 m_ucPanelVBackPorch; ///< define PANEL_V
SYNC_BACK_PORCH

 // DE related
 (HPW+HBP), //MS_U16 m_wPanelHStart; ///< VOP_04[1
1:0], PANEL_HSTART, DE H Start (PANEL_HSYNC_WIDTH + PANEL_HSYNC_BACK_PORC
H)
 (VPW+VBP), //MS_U16 m_wPanelVStart; ///< VOP_06[1
1:0], PANEL_VSTART, DE V Start
 HDA, //MS_U16 m_wPanelWidth; ///< PANEL_WIDTH, D
E width (VOP_05[11:0] = HEnd = HStart + Width - 1)
 VDA, //MS_U16 m_wPanelHeight; ///< PANEL_HEIGHT, D
E height (VOP_07[11:0], = Vend = VStart + Height - 1)

 // DClk related
 0, //MS_U16 m_wPanelMaxHTotal; ///< PANEL_MAX_HTOTA
L. Reserved for future using.
 (HDA+HPW+HBP+HFP), //MS_U16 m_wPanelHTotal; ///<
VOP_0C[11:0], PANEL_HTOTAL
 0, //MS_U16 m_wPanelMinHTotal; ///< PANEL_MIN_HTOTA
L. Reserved for future using.

 0, //MS_U16 m_wPanelMaxVTotal; ///< PANEL_MAX_VTOTA
L. Reserved for future using.
 (VDA+VPW+VBP+VFP), //MS_U16 m_wPanelVTotal; ///<
VOP_0D[11:0], PANEL_VTOTAL

70

71
72
73
74
75
76

77

78
79

80

81

82

83

84
85
86

87

88

89

90
91
92

93

94

95
96

97

98

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

47

 0, //MS_U16 m_wPanelMinVTotal; ///< PANEL_MIN_VTOTA
L. Reserved for future using.

 0, //MS_U8 m_dwPanelMaxDCLK; ///< PANEL_MAX_DCLK.
Reserved for future using.
 ((unsigned long)(VDA+VPW+VBP+VFP)*(HDA+HPW+HBP+HFP)*FPS/1000000), //M
S_U8 m_dwPanelDCLK; ///< LPLL_0F[23:0], PANEL_DCLK
 ,{0x3100_10[7:0], 0x3100_0F[15:0]}
 0, //MS_U8 m_dwPanelMinDCLK; ///< PANEL_MIN_DCLK.
Reserved for future using.
 ///< spread spectrum
 0, //MS_U16 m_wSpreadSpectrumStep; ///< move to board de
fine, no use now.
 0, //MS_U16 m_wSpreadSpectrumSpan; ///< move to board de
fine, no use now.

 160, //MS_U8 m_ucDimmingCtl; ///< Initial Dimmin
g Value
 255, //MS_U8 m_ucMaxPWMVal; ///< Max Dimming Va
lue
 80, //MS_U8 m_ucMinPWMVal; ///< Min Dimming Val
ue

 0, //MS_U8 m_bPanelDeinterMode :1; ///< define PANEL_DEI
NTER_MODE, no use now
 E_MHAL_PNL_ASPECT_RATIO_WIDE, //MHAL_DISP_PnlAspectRatio_e m_ucPanel
AspectRatio; ///< Panel Aspect Ratio, provide information to upper laye
r application for aspect ratio setting.
 /*
 *
 * Board related params
 *
 * If a board (like BD_MST064C_D01A_S) swap LVDS TX polarity
 * : This polarity swap value =
 * (LVDS_PN_SWAP_H<<8) | LVDS_PN_SWAP_L from board define,
 * Otherwise
 * : The value shall set to 0.
 */
 0, //MS_U16 m_u16LVDSTxSwapValue;
 E_MHAL_PNL_TI_8BIT_MODE, //MHAL_DISP_ApiPnlTiBitMode_e m_ucTiBitMod
e; ///< MOD_4B[1:0], refer to "LVDS output app no
te"
 E_MHAL_PNL_OUTPUT_8BIT_MODE, //MHAL_DISP_ApiPnlOutPutFormatBitMode_
e m_ucOutputFormatBitMode;

 0, //MS_U8 m_bPanelSwapOdd_RG :1; ///< define PANEL_SWA
P_ODD_RG

99
100

101

102

103
104

105

106
107

108

109

110
111

112

113
114
115
116
117
118
119
120
121
122
123
124

125

126
127

128

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

48

如果感兴趣的可以了解一下PurPle-Pi-

R1\project\image\makefiletools\src\rawgenerator\pnl\mhal_pnl_datatype.h和PurPle-Pi-

R1\project\release\include\mi_panel_datatype.h这两个文件

1）.拷贝屏参文件到project/image/makefiletools/src/rawgenerator/pnl

2）project/image/makefiletools/src/rawgenerator/disp_data_main.c，添加屏参的头文件以及修改

配置和添加屏参文件：

在修改配置的时候，我们可以看看定义的结构体变量中第一个是名称(随便取一般是屏幕型号)，第二个第

三个对应屏参文件的机构提

 0, //MS_U8 m_bPanelSwapEven_RG :1; ///< define PANEL_SWA
P_EVEN_RG
 0, //MS_U8 m_bPanelSwapOdd_GB :1; ///< define PANEL_SWA
P_ODD_GB
 0, //MS_U8 m_bPanelSwapEven_GB :1; ///< define PANEL_SWA
P_EVEN_GB

129

130

131
132
133
134

typedef struct
{
 const char *pName;
 MhalPnlParamConfig_t *pstMPnlParaConfig;
 MhalPnlMipiDsiConfig_t *pMipiDsiConfig;
}SS_SHEADER_TableHandler_t;

1
2
3
4
5
6

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

49

U5505HA-WA0-720x1280-MIPI-bootlogo.h

3） 在project/board/ini/misc添加屏参图片

4） 在project/configs/nvr/i2m/8.2.1/spinand.glibc.011a.128修改下配置信息

注意：这里的U5505HA_WA0_720x1280，要对应disp_data_main.c截图里的名称和图片的名称，如上

图所示

5）配置完成之后编译一下：

6）如果发现开机启动的时候发现，图片没有起来，可能在uboot的时候没有使能背光和使能屏幕或者，

你使能引脚是低给电的话，就需要在uboot设置下，所以我们可以在

project/image/configs/i2m/script_nand.mk下添加：

cd PurPle-Pi-R1/project/image/makefiletools/src/rawgenerator

make

1
2
3

Plain Text 复制代码深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

50

7）然后重新一下固件

从TP的驱动IC的外观可以了解到，驱动IC型号为GT911：

很幸运，这并不是一个罕见的型号，内核已经自带驱动：

把我们的屏幕去放置到：projecg/drivers/input/touchscreen下：

TP配置

配置kernel

./Release_to_customer.sh -f nand -p ssd202 -m 2561

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

51

kernel需要配置加载GT911的驱动：

保存一下配置：

从原理图得知，I2C使用了GPIO1、GPIO2、GPIO12和GPIO13，根据SSD201 HW Checklist V6.xlsx，

GPIO2和GPIO3该组I2C为I2C1，且MODE为1，因此I2C部分DTS作如下修改:

配置DTS

cd kernel
ARCH=arm make menuconfig

1
2

Plain Text 复制代码

Location:
 -> Device Drivers --->
 -> Input device support --->
 -> [*] Touchscreens --->
 ->	 <*> Goodix I2C touchscreen

1
2
3
4
5

Plain Text 复制代码

 cp .config arch/arm/configs/infinity2m_spinand_ssc011a_s01a_minigui_double
net_defconfig

1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

52

在设备书中配置I2C1，MODE 1模式：

然后需要配置i2c1的节点信息：

vi kernel/arch/arm/boot/dts/infinity2m-ssc011a-s01a-padmux-rgb565-rmii-doub
lenet.dtsi

1

Plain Text 复制代码

vi kernel/arch/arm/boot/dts/infinity2m-ssc011a-s01a-rgb565-rmii-doublenet.d
tsi

1

Plain Text 复制代码深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

53

在i2c1下配置对应驱动的节点信息

goodix_gt911@5D{ //EVB i2c-padmux=2 SSD201_SZ_DEMO_BOARD i2c-padmux=1
 compatible = "goodix,gt911";
 reg = <0x5D>;
 goodix_rst = <PAD_GPIO12>; //SSD201_SZ_DEMO_BOARD PAD_GPIO1 EVB PAD_G
PIO0
 goodix_int = <PAD_GPIO13>; //SSD201_SZ_DEMO_BOARD PAD_GPIO13 EVB PAD_
GPIO1
 interrupts-extended = <&ms_gpi_intc INT_GPI_FIQ_GPIO13>;
 interrupt-names = "goodix_int";
};

1
2
3
4

5

6
7
8
9
10

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

54

配置完后，重新编译并更新kernel：

系统起来后，可以看到/dev/input下有一个event0：

并且在cat它的时候，点击TP，会输出信息：

我们使用测试程序：

验证

测试：

./Release_to_customer.sh -f nand -p ssd202 -m 2561

Plain Text 复制代码

ls /dev/input1

Plain Text 复制代码

cat /dev/input/event01

Plain Text 复制代码

mkdir -p test/tp
cd test/tp
vi tp_test.c

1
2
3

Plain Text 复制代码深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

55

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <linux/input.h>

static int event0_fd = -1;
struct input_event ev0;

static int handle_event0()
{
 int rd;

 rd = read(event0_fd, &ev0, sizeof(struct input_event));
 if(rd < sizeof(struct input_event)){
 return 0;
 }

 if(EV_ABS == ev0.type){
 if (ev0.code == ABS_X){
 printf("ABS_X:");
 }else if (ev0.code == ABS_Y){
 printf("ABS_Y:");
 }else if (ev0.code == ABS_PRESSURE){
 printf("ABS_PRESSURE:");
 }else{
 printf("UNKNOWEN:");
 }
 printf("value:%d\n", ev0.value);
 }

 return 1;
}

int main(void)
{
 int done = 1;

 event0_fd = open("/dev/input/event0", O_RDONLY);
 if(event0_fd <0) {
 printf("open input device error\n");
 return -1;
 }
 while (done){

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

C 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

56

交叉编译tp_test.c：

将tp_test拷贝到板子上并运行：

 done = handle_event0();
 }

 if(event0_fd > 0){
 close(event0_fd);
 event0_fd = -1;
 }
 return 0;
}

4647
48
49
50
51
52
53
54

arm-linux-gnueabihf-gcc tp_test.c -o tp_test1

Plain Text 复制代码

./tp_test1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

57

参考链接：https://wx.comake.online/doc/doc/SigmaStarDocs-SSD201-SIGMASTAR-

202305231818/platform/BSP/Takoyaki/gpio_zh.html#425

本次示例是使用GPIO6引脚如果不了解gpio的对应关系，我们可以直接查看gpio.h文件

DTS需要将这GPIO设置为GPIO_MODE（取消其他复用，就是默认为GPIO_MODE）：

GPIO配置

uboot 、kernel下使用GPIO

user space 使用 GPIO

DTS的配置

kernel/drivers/sstar/include/infinity2m/gpio.h1

Plain Text 复制代码

GPIO丝印名称
 GPIO NUM

IO6
 6深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

https://wx.comake.online/doc/doc/SigmaStarDocs-SSD201-SIGMASTAR-202305231818/platform/BSP/Takoyaki/gpio_zh.html#425

58

因为这个GPIO6可以复用为I2C，所以我们也需要把dts对应节点设置为disable：

kernel本身是默认加载了GPIO的驱动，因此不需要修改任何东西：

每次修改需要保存一下配置：

这样配置完成后，重新编译固件并升级kernel：

kernel的配置

vi kernel/arch/arm/boot/dts/infinity2m-ssc011a-s01a-padmux-rgb565-rmii-doub
lenet.dtsi

1

Plain Text 复制代码

vi kernel/arch/arm/boot/dts/infinity2m-ssc011a-s01a-padmux-rgb565-rmii-doub
lenet.dtsi

1

Plain Text 复制代码

cp .config arch/arm/boot/dts/infinity2m-ssc011a-s01a-rgb565-rmii-doublene
t.dtsi -f
cd ..

1

2

Plain Text 复制代码

cd ..
 # ./Release_to_customer.sh -f nand -p ssd202 -m 256

1
2

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

59

我的验证方法是这样的，IO7（需另外配置）和IO6用导线联通。然后将IO7作为输入，IO6作为输出。如

果IO7的输入电平等于IO6的输出电平，说明GPIO功能是正常的：

从硬件的角度看，以太网接口电路，主要由MAC（Media Access Control）控制器和物理层接口和PHY

（Physical Layer，PHY）两大部分构成，如下图所示：

验证

ETH配置

以太网框架图

echo 7 > /sys/class/gpio/export
echo in > /sys/class/gpio/gpio7/direction
echo 6 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio6/direction
echo 1 > /sys/class/gpio/gpio6/value
cat /sys/class/gpio/gpio7/value
echo 0 > /sys/class/gpio/gpio6/value
cat /sys/class/gpio/gpio7/value

1
2
3
4
5
6
7
8

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

60

我们从上图看出在MAC和PHY之间有一个RMII，这个是IEE-802.3定义的行业标准，是MAC与PHY之间

的接口，这其中包括了数据接口和MDIO管理接口，其中MDIO管理接口包括了MDC和MDIO两根信号

线，是用于PHY或者Switch芯片寄存器实现传输信息与状态控制。这其实是精简的MII接口，相对于MII节

省了一般的数据线，相应的，他的是时钟也均采用50MHZ时钟源。

RMII接口介绍

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

61

MDIO和MDC对应的引脚为GPIO0和GPIO1，而且RMII其他数据线对应的是TTL16~23：故对应的引脚模

式如下：

DTS的配置

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

62

故，我们在dts的配置如下：

vi kernel/arch/arm/boot/dts/infinity2m-ssc011a-s01a-padmux-rgb565-rmii-doub
lenet.dtsi

1

Plain Text 复制代码

<PAD_GPIO0 PINMUX_FOR_ETH1_MODE_4 MDRV_PUSE_NA >,
<PAD_GPIO1 PINMUX_FOR_ETH1_MODE_4 MDRV_PUSE_NA >,

<PAD_TTL16 PINMUX_FOR_GPIO_MODE MDRV_PUSE_EMAC1_PHY_RESET
>,
<PAD_TTL17 PINMUX_FOR_ETH1_MODE_4 MDRV_PUSE_NA >,
<PAD_TTL18 PINMUX_FOR_ETH1_MODE_4 MDRV_PUSE_NA >,
<PAD_TTL19 PINMUX_FOR_ETH1_MODE_4 MDRV_PUSE_NA >,
<PAD_TTL20 PINMUX_FOR_ETH1_MODE_4 MDRV_PUSE_NA >,
<PAD_TTL21 PINMUX_FOR_ETH1_MODE_4 MDRV_PUSE_NA >,
<PAD_TTL22 PINMUX_FOR_ETH1_MODE_4 MDRV_PUSE_NA >,
<PAD_TTL23 PINMUX_FOR_ETH1_MODE_4 MDRV_PUSE_NA >,

1
2
3
4
5
6

7
8
9
10
11
12
13
14

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

63

设置设备树对应网络节点，如果只需要开启某一个网口，直接把status属性设置为disabled：

这里一般都是默认配好了的。

在kernel目录下执行：

 在菜单里的：> Device Drivers > Network device support > PHY Device support and infrastructure

下选中MDIO bus/PHY：

然后在菜单里的：> Device Drivers > SStar SoC platform drivers下选中EMAC

Kernel配置

vi kernel/arch/arm/boot/dts/infinity2m-doublenet.dtsi1

Plain Text 复制代码

make menuconfig ARCH=arm1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

64

即可，这些都是默认配置所以不需要自己配置。

保存下当前配置：

返回主目录重新编译：

这里WIFI是指由原厂配套的WIFI，型号为ssw01b，SDK中包含了该WIFI的驱动模块，位于

project/release/nvr/i2m/common/glibc/8.2.1/wifi/modules/ssw101b_wifi_HT40_usb.ko。

WIFI配置

驱动配置

project配置

cp .config arch/arm/configs/infinity2m_spinand_ssc011a_s01a_minigui_doubl
enet_defconfig -f

1

Plain Text 复制代码

./Release_to_customer.sh -f nand -p ssd202 -m 2561

Plain Text 复制代码

vi project/image/configs/i2m/rootfs.mk1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

65

我们可以看出我们需要把interface_wlan调成enable，这个的配置在：

进入kernel目录下进行配置：

 Kernel配置

if [$(interface_wlan) = "enable"]; then \
 mkdir -p $(miservice$(RESOUCE))/wifi ; \
 if [$(FLASH_TYPE) = "spinand"]; then \
 cp -rf $(LIB_DIR_PATH)/wifi/libs/ap/* $(miservice$(RESOU
CE))/wifi ; \
 cp -rf $(LIB_DIR_PATH)/wifi/bin/ap/* $(miservice$(RESOUC
E))/wifi ; \
 fi; \
 find $(LIB_DIR_PATH)/wifi/bin/ -maxdepth 1 -type f -exec cp -P {}
 $(miservice$(RESOUCE))/wifi \; ;\
 find $(LIB_DIR_PATH)/wifi/bin/ -maxdepth 1 -type l -exec cp -P {}
 $(miservice$(RESOUCE))/wifi \; ;\
 find $(LIB_DIR_PATH)/wifi/libs/ -maxdepth 1 -type f -exec cp -P
{} $(miservice$(RESOUCE))/wifi \; ;\
 find $(LIB_DIR_PATH)/wifi/libs/ -maxdepth 1 -type l -exec cp -P
{} $(miservice$(RESOUCE))/wifi \; ;\
 cp -rf $(LIB_DIR_PATH)/wifi/modules/* $(miservice$(RESOUCE))/wif
i ; \
 cp -rf $(LIB_DIR_PATH)/wifi/configs/* $(miservice$(RESOUCE))/wif
i ; \
fi;

1
2
3
4

5

6
7

8

9

10

11

12

13
14

Plain Text 复制代码

vi project/release/customer_tailor/nvr_i2m_display_glibc_tailor.mk1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

66

> Networking support > Networking options。

保存一下配置

根据原理图，我们的wifi使用的是usb1接口的，因此我们需要配置USB1（默认配好的，无需更改）：

DTS的配置

ARCH=arm make menuconfig1

Plain Text 复制代码

cp .config arch/arm/configs/infinity2m_spinand_ssc011a_s01a_minigui_doublen
et_defconfig

1

Plain Text 复制代码

vi kernel/arch/arm/boot/dts/infinity2m-doublenet.dtsi1

Plain Text 复制代码

vi kernel/arch/arm/boot/dts/infinity2m-ssc011a-s01a-padmux-rgb565-rmii-doub
lenet.dtsi

1

2

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

67

系统启动后，通过lsusb可以看到1b20:8888的设备，它便是wifi模块。

执行我们的脚本文件自动加载驱动，在我们的脚本文件里已经包含所需要的驱动以及sta和AP所需要的一

些套接字的路径：

加载驱动

/config/wifi/ssw01bInit.sh1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

68

#!/bin/sh

/config/riu_w e 30 11
/config/riu_w 103c 8 00
sleep 0.01
/config/riu_w 103c 8 10

#mkdir -p /etc/
#touch /etc/hosts
touch /appconfigs/hosts
mkdir -p /tmp/wifi/run
chmod 777 /tmp/wifi/run
mkdir -p /appconfigs/misc/wifi/
mkdir -p /var/wifi/misc/
mkdir -p /var/lib/misc/
mkdir -p /var/run/hostapd/
insmod /config/wifi/ssw101b_wifi_HT40_usb.ko
mdev -s
wlan0=`ifconfig -a | grep wlan0`
trial=0
maxtrycnt=50
while [-z "$wlan0"] && [$trial -le $maxtrycnt]
do
 sleep 0.2
 #echo currect try $trial...
 trial=$(($trial + 1))
 wlan0=`ifconfig -a | grep wlan0`
done
if [$trial -le $maxtrycnt]; then
 echo try $trial times
fi
if [$trial -gt $maxtrycnt];then
 echo wlan0 not found
 exit -1
fi
echo LOG_WARN=OFF > /sys/module/ssw101b_wifi_usb/Sstarfs/Sstar_printk_mask
echo LOG_INIT=OFF > /sys/module/ssw101b_wifi_usb/Sstarfs/Sstar_printk_mask
echo LOG_EXIT=OFF > /sys/module/ssw101b_wifi_usb/Sstarfs/Sstar_printk_mask
echo LOG_SCAN=OFF > /sys/module/ssw101b_wifi_usb/Sstarfs/Sstar_printk_mask
echo LOG_LMAC=OFF > /sys/module/ssw101b_wifi_usb/Sstarfs/Sstar_printk_mask
echo LOG_PM=OFF > /sys/module/ssw101b_wifi_usb/Sstarfs/Sstar_printk_mask
exit 0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

ssw01bInit.sh Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

69

驱动加载完后，我们就可以看到wlan0网卡：

wpa_supplicant是一个独立运行的守护进程，用来启动无线网络后台服务，在消息循环中处理WPA状态

机、控制命令、驱动事件、配置信息等。

常用命令参数如下：

前面我们已经加载了模块驱动，并且wlan0网卡存在，现在我们通过wpa_supplicant来连接WiFi热点，

我们修改wpa_supplicant.conf，填入wifi热点信息：

STA模式

-I <ifname> // 网络接口名称

-c <conf> // 配置文件名称

-C <ctrl_intf> // 控制接口名称

-D<driver> // 驱动类型名称

-p <driver_param> // 驱动参数

-b <br_ifname> // 桥接口名称

-d // 增加调试信息

1
2
3
4
5
6
7
8
9
10
11
12
13

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

70

我们可以去看看能否搜索到这个热点：

接着尝试去连接：

这里我们要以p2p0做为AP热点，且ip段为196.168.0.x，所以我们设置给ip地址，如果开启了服务ap服务

及dhcp服务再设置ip的话，会出现连接失败的现象：

AP模式

vi /appconfigs/wpa_supplicant.conf1

Plain Text 复制代码

ctrl_interface=/tmp/wifi/run/wpa_supplicant
update_config=1
network={
 scan_ssid=1
 ssid="TP-LINK_B87A"
 psk="12345678"

}

1
2
3
4
5
6
7
8

Plain Text 复制代码

/config/wifi/iwlist wlan0 scan1

Plain Text 复制代码

/config/wifi/wpa_supplicant -D nl80211 -i wlan0 -c /appconfigs/wpa_supplica
nt.conf -B &

1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

71

当我们的WiFi模块作为AP热点时，需要配置一下热点信息：

这里使用p2p0作为AP热点，当然我们也可以用wifi模块作为我们的AP热点，这样就要设置

interface=wlan0，

开启DHCP服务，如果没有开启这项服务的话有可能会导致连接失败：

ifconfig p2p0 192.168.0.11

Plain Text 复制代码

vi /config/wifi/hostapd.conf1

Plain Text 复制代码

vi /config/wifi/dnsmasq.conf1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

72

 注意：这里的interface要根据那个模块作为AP热点来定，如果是wifi模块，则要设置为wlan0

开启热点

开启dhcp

现在设备可以正常连接热点了，但此时我想连接设备能够上网，即把板子当作一个路由器，把eth0当作WAN，

把wlan0当作LAN。首先需要确认eth0/eth1是可以上网的。

通过brctl桥接工具可以实现，此工具默认是没有安装的，和之前一样，从buildroot获取：

上网

/config/wifi/hostapd -B /config/wifi/hostapd.conf1

Plain Text 复制代码

/config/wifi/dnsmasq -i wlan0 -C /config/wifi/dnsmasq.conf1

Plain Text 复制代码

cd buildroot-2020.05/
ARCH=arm make menuconfig

1
2

Plain Text 复制代码深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

73

重新编译固件

更新固件后，前面的加载驱动、hostapd服务和dnsmasq服务需要重新执行，然后执行以下命令建立桥接：

RTC采用标准的LINUX框架，能够使用统一的接口来操作RTC。

所以我们进入内核菜单，开启一下RTC相关驱动：

Device Drivers

> SStar SoC platform drivers

RTC配置

kernel配置

cp .config ./configs/ssd20x_defconfig -f
make BR2_JLEVEL=4
cd ../project/image/rootfs
rm rootfs/* -rf
cp ../../../buildroot-2020.05/output/images/rootfs.tar ./ -f
tar -xvf rootfs.tar -C ./rootfs/
tar -cvf rootfs.tar.gz ./rootfs
cd ../../../

1
2
3
4
5
6
7
8

Plain Text 复制代码

./Release_to_customer.sh -f nand -p ssd202 -m 2561

Plain Text 复制代码

brctl addbr br0
brctl addif br0 wlan0
brctl addif br0 eth0
ifconfig br0 up

1
2
3
4

Plain Text 复制代码

make menuconfig ARCH=arm1

Plain Text 复制代码深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

74

保存一下配置并且重新编译：

烧录到开发板，我们可以看到/dev/rtc节点，证明我们可以正常使用RTC。

分析原理图，我们使用的是UART1_TXD和UART1_RXD引脚

RTC操作方法

DTS配置

cp .config arch/arm/configs/infinity2m_spinand_ssc011a_s01a_minigui_doublen
et_defconfig
cd ..
./Release_to_customer.sh -f nand -p ssd202 -m 256

1

2
3

Plain Text 复制代码

date -s "2020-11-12 10:10:10" //设置系统时间
hwclock -w //将系统时间更新到 RTC
hwclock -r //读取 RTC 时间
hwclock -s //将 RTC 时间同步系统时间

1
2
3
4

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

75

音频（耳机）配置

1. LineOut

DTS配置

vi arch/arm/boot/dts/infinity2m-ssc011a-s01a-padmux-rgb565-rmii-doublenet.d
tsi

1

Plain Text 复制代码

vi arch/arm/boot/dts/infinity2m-ssc011a-s01a-padmux-rgb565-rmii-doublenet.d
tsi

1

Plain Text 复制代码

vi kernel/arch/arm/boot/dts/infinity2m-doublenet.dtsi1

Bash 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

76

这里的amp-gpio，我们是需要开启的，因为在其他接口用到了PAD_FUART_RX，所以在使用LineOut之

前是关闭的。这个的作用是为amp_gpio的左右声道控制pin：

由于原厂没有提供驱动源码，只提供ko模块，模块在：

这个模块是linux内核驱动模块，它与音频相关，提供了音频设备交互，例如音频数据的输入，输出和处

理，默认是直接编进内核的。

sound {
 compatible = "sstar,audio";
// reg = <0x1F000000 0x1000000>;
 interrupts=<GIC_SPI INT_IRQ_BACH IRQ_TYPE_LEVEL_HIGH>;
 playback-volume-level=<64>; //0~94
 capture-volume-level=<64>;
 // micin-pregain-level=<1>; //0~3
 micin-pregain-level=<0>; //0~3
 micin-gain-level=<3>; //0~7
 linein-gain-level=<2>; //0~7
 amp-gpio = <PAD_FUART_RX 1>;//控制声道pin
 clocks = <&CLK_upll_384m>;
 // playback-dma-buffer=<98304>; //512(ms)*48(kHz)*2(ch)*2(16bits)
 // capture-dma-buffer=<122880>; //640(ms)*48(kHz)*2(ch)*2(16bits)
 digmic-padmux = <2>;
 i2s-padmux = <2>;//i2s mode
 keep-i2s-clk = <0>;
 status = "ok";
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Plain Text 复制代码

vi kernel/arch/arm/boot/dts/infinity2m-ssc011a-s01a-padmux-rgb565-rmii-doub
lenet.dtsi

1

Bash 复制代码

project/release/nvr/i2m/common/glibc/8.2.1/modules/4.9.84/1

Bash 复制代码深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

77

我们音频播放程序audio_all_test_case验证lLineOut功能：

我们可以看到，audio_all_test_cas默认是编译的，因此直接make即可：

编译完成之后，将在../out/demo/app/下产生可执行程序：

我们把prog_audio_all_test_case放到project/image/rootfs_add_files/

执行程序有了，缺少一个音频文件，这里注意，需要的是格式为wav的，我们把它放到

重新编译系统

验证

cd sdk/verify/mi_demo/geonosis/
vi Makefile

1
2

Bash 复制代码

make1

Bash 复制代码

cp prog_audio_all_test_case ../../../../../../project/image/rootfs_add_file
s/usr/bin/

1

Bash 复制代码

mkdir project/image/rootfs_add_files/media
cp pizzicato.wav project/image/rootfs_add_files/media

1
2

Bash 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

78

在开发板内执行命令

1. LineOut支持左右声道，但是只有一路的dev，意思就是说可以连接到左右声道输出，但是只有一个

音频通道可供使用，即只能输出单声道的音频播放，如果需要播放立体左右声道，需要音频文件本

身就左右声道组合好通过STEREO MODE播放(不支持单独喂数据)

我们把测试demo和测试音频文件保存在IDO_SSD20X/开发板/IDO-SBC2D07/开发文档/test/lineout/

下。

至此，LineOut调试完成。

补充

./Release_to_customer.sh -f nand -p ssd202 -m 2561

Plain Text 复制代码

prog_audio_all_test_case -t 10 -O -i /media/pizzicato.wav -D 0 -V 31

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

79

DMIC接口也称双/立体声数字麦克风接口。 这种接口允许两个麦克风共享一个公共的时钟与数据线。每

个麦克风被配置为在时钟信号的不同沿产生各自的输出。这样两个麦克风的输出就能保持相互同步，设

计师就能确保来自每个通道的数据被同时捕获到。

首先根据我们的硬件确定使用的是那组的pin，使用SSD201HWChecklistV6.xlsx 可以看出是：

配置是跟上面LineOut的没啥关系的，这里主要注意的是i2s-padmux，这里对应的是mode 2，上面也有

说明。

2. DMIC

DTS的配置

sound {
 compatible = "sstar,audio";
// reg = <0x1F000000 0x1000000>;
 interrupts=<GIC_SPI INT_IRQ_BACH IRQ_TYPE_LEVEL_HIGH>;
 playback-volume-level=<64>; //0~94
 capture-volume-level=<64>;
 // micin-pregain-level=<1>; //0~3
 micin-pregain-level=<0>; //0~3
 micin-gain-level=<3>; //0~7
 linein-gain-level=<2>; //0~7
 amp-gpio = <PAD_FUART_RX 1>;//控制声道pin
 clocks = <&CLK_upll_384m>;
 // playback-dma-buffer=<98304>; //512(ms)*48(kHz)*2(ch)*2(16bits)
 // capture-dma-buffer=<122880>; //640(ms)*48(kHz)*2(ch)*2(16bits)
 digmic-padmux = <2>;
 i2s-padmux = <2>;//DMIC mode
 keep-i2s-clk = <0>;
 status = "ok";
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

80

我们修改对应的padmux dts，设置引脚为DMIC_MODE：

当然，kernel 也需要加载对应的驱动：

保存一下配置：

接下来，我们编译下固件，然后烧进开发板，测试一下：

这样将在/tmp产生我们的录音文件：

AMIC功能是默认加载，不需要修改 DTS 配置。和 DMIC 一样，使用 audio_all_test_case 程序来测

试：

kernel

3. AMIC

cd kernel
ARCH=arm make menuconfig

1
2

Plain Text 复制代码

cp .config arch/arm/configs/infinity2m_spinand_ssc011a_s01a_minigui_doublen
et_defconfig

1

Plain Text 复制代码

prog_audio_all_test_case -t 20 -I -o /tmp -d 1 -m 0 -c 2 -s 480001

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

81

这里跟DMIC唯一不同的是，-d 0，在DIMC中，是-d 1

 将会在/tmp/目录下生成 Chn0_Amic_48K_16bit_MONO.wav 和

Chn1_Amic_48K_16bit_MONO.wav。如果有LineOut接口，可以直接播放该录音文件，判断是否录音成

功。

首先根据我们的硬件确定使用的是那组的pin，使用SSD201HWChecklistV6.xlsx 可以看出是：

然后修改dts的sound节点i2s-padmux 的值（mode的值）：

4. I2S

DTS的配置

prog_audio_all_test_case -t 20 -I -o /tmp -d 0 -m 0 -c 2 -s 480001

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

82

接着还需要将该组 GPIO 配置为 I2S 模式：

这样配置后，和 AMIC/DMIC 一样，使用 audio_all_test_case 程序来测试：

将会在/tmp/目录下生成Chn0_I2SRx_48K_16bit_MONO.wav和Chn1_I2SRx_48K_16bit_MONO.wav。

如果有LineOut接口，可以直接播放该录音文件，判断是否录音成功。

Watchdog配置

开启驱动

sound {
 compatible = "sstar,audio";
// reg = <0x1F000000 0x1000000>;
 interrupts=<GIC_SPI INT_IRQ_BACH IRQ_TYPE_LEVEL_HIGH>;
 playback-volume-level=<64>; //0~94
 capture-volume-level=<64>;
 // micin-pregain-level=<1>; //0~3
 micin-pregain-level=<0>; //0~3
 micin-gain-level=<3>; //0~7
 linein-gain-level=<2>; //0~7
 amp-gpio = <PAD_FUART_RX 1>;//控制声道pin
 clocks = <&CLK_upll_384m>;
 // playback-dma-buffer=<98304>; //512(ms)*48(kHz)*2(ch)*2(16bits)
 // capture-dma-buffer=<122880>; //640(ms)*48(kHz)*2(ch)*2(16bits)
 digmic-padmux = <2>;
 i2s-padmux = <1>;//i2s mode
 keep-i2s-clk = <0>;
 status = "ok";
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Plain Text 复制代码

<PAD_GPIO0 PINMUX_FOR_I2s_MODE_1 MDRV_PUSE_I2s_WCK >,
<PAD_GPIO1 PINMUX_FOR_I2s_MODE_1 MDRV_PUSE_I2s_BCK >,
<PAD_GPIO2 PINMUX_FOR_I2s_MODE_1 MDRV_PUSE_I2s_SDI >,
<PAD_GPIO3 PINMUX_FOR_I2s_MODE_1 MDRV_PUSE_I2s_SDO >,

1
2
3
4

Plain Text 复制代码

prog_audio_all_test_case -t 20 -I -o /tmp -d 2 -m 0 -c 2 -s 481

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

83

 > Device Drivers

> [*]SStar SoC platform drivers

> <*>watchdog driver

保存下配置

编译固件烧录开发板

如果能查找到节点/dev/watchdog就说明加载成功

使用标准的watchdog命令即可对watchdog进行测试。

以下测试没有在规定时间内喂狗，系统重启功能：

以下测试在规定时间内喂狗，系统正常运行：

测试

cp .config arch/arm/configs/infinity2m_spinand_ssc011a_s01a_minigui_doublen
et_defconfig

1

Plain Text 复制代码

watchdog -t 10 /dev/watchdog //表示每10s喂狗一次
watchdog -T 5 /dev/watchdog //表示超过5s没有喂狗则系统重启

1
2

Plain Text 复制代码

watchdog -t 10 -T 5 /dev/watchdog //5s后系统重启1

Plain Text 复制代码

watchdog -t 10 -T 60 /dev/watchdog1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

84

这个服务设定每3秒喂狗一次，而默认是60秒没有喂狗系统才重启，因此系统正常运行情况下，看门狗不

会复位。

添加 watchdog 服务

#!/bin/sh
#Start watchdog
case"$1"in
 start)
 echo "Startingwatchdog..."
 watchdog -t 3 /dev/watchdog
 ;;
 stop)
 ;;
 restart|reload)
 ;;
 *)
 echo "Usage:$0{start|stop|restart}"
 exit 1
 esac
 exit $?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Shell 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

