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kernel

3. AMIC

4. I2S

DTS的配置

Watchdog配置

开启驱动

测试

添加 watchdog 服务




深圳触觉智能科技有限公司

www.industio.cn 


PurPle-Pi-R1


接口调试教程手册

深
圳
触
觉
智
能
科
技
有
限
公
司
 

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn

http://www.industio.cn/


4

文档修订历史

首先我们先确定我们sdk内核的版本为4.9.84


接口调试

版本
 修订内容 修订 审核 日期

V1.0
 创建文档  何伟聪
 2022/08/02

# cat kernel/Makefile | more1
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我们进入我们脚本文件Release_to_customer.sh，进行了解kernel、uboot、rootfs。


如果我们的使用的flash是nand的话，我们使用的defconfig是：


位置在kernel/arch/arm/configs/，我们进入该文件找到生成的DTB文件是：


确认DTS文件


kernel


#build kernel
cd ${RELEASEDIR}/kernel
declare -x ARCH="arm"
declare -x CROSS_COMPILE="arm-linux-gnueabihf-"
if [ "${flashtype}" = "nor" ]; then
        if [ "${fastboot}" = "fastboot" ]; then
                make infinity2m_ssc011a_s01a_fastboot_defconfig
        else
                make infinity2m_ssc011a_s01a_minigui_defconfig
        fi
else
        if [ "${fastboot}" = "fastboot" ]; then
                make infinity2m_spinand_ssc011a_s01a_minigui_fastboot_doub
lenet_defconfig
        else
                make infinity2m_spinand_ssc011a_s01a_minigui_doublenet_def
config
        fi


fi
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Plain Text 复制代码

infinity2m_spinand_ssc011a_s01a_minigui_doublenet_defconfig1

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司
 

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn



6

从infinity2m-spinand-ssc011a-s01a-rgb565-rmii-doublenet.dtb中可以知道我们的dts就是从

infinity2m-spinand-ssc011a-s01a-rgb565-rmii-doublenet.dts，位置在kernel/arch/arm/boot/dts,

我们打开dts发现里面包含了这三个文件，我们后续的内核设备树的配置主要都在这三个文件内。


uboot


infinity2m-spinand-ssc011a-s01a-rgb565-rmii-doublenet1

Plain Text
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在Release_to_customer.sh中可以看到，当flash为nand时，uboot下的配置文件如下：位置

在/boot/configs/infinity2m_spinand_defconfig


infinity2m_spinand_defconfig配置如下所示：

从CONFIG_SYS_SOC，我们可以知道，我们的配置文件文件为：


# build uboot
cd ${RELEASEDIR}/boot
declare -x ARCH="arm"
declare -x CROSS_COMPILE="arm-linux-gnueabihf-"
if [ "${flashtype}" = "nor" ]; then
        make infinity2m_defconfig
else
        make infinity2m_spinand_defconfig
fi
#make clean
make -j8


if [ "${flashtype}" = "nor" ]; then
        if [ -d ../project/board/i2m/boot/nor/uboot ]; then
                cp u-boot.xz.img.bin ../project/board/i2m/boot/nor/uboot
        fi
else
        if [ -d ../project/board/i2m/boot/spinand/uboot ]; then
                cp u-boot_spinand.xz.img.bin ../project/board/i2m/boot/spi
nand/uboot
        fi
fi
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Plain Text 复制代码

vi CONFIG_MS_SAVE_ENV_IN_NAND_FLASH1

Plain Text 复制代码

CONFIG_SYS_ARCH="arm"
CONFIG_SYS_CPU="armv7"
CONFIG_SYS_SOC="infinity2m"
CONFIG_SYS_CONFIG_NAME="infinity2m"
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配置信息如下：

boot/include/configs/infinity2m.h1

Plain Text 复制代码

#ifdef CONFIG_MS_SPINAND
#if defined(CONFIG_MS_SAVE_ENV_IN_NAND_FLASH)
#define CONFIG_ENV_IS_IN_NAND
#define CONFIG_ENV_OFFSET       CONFIG_MSTAR_ENV_NAND_OFFSET
#define CONFIG_MSTAR_ENV_NAND_OFFSET ms_nand_env_offset
/*#define CONFIG_MSTAR_ENV_NAND_OFFSET 0x440000*/
#define CONFIG_ENV_RANGE        0x20000
#define CONFIG_ENV_SIZE         0x1000 // Using 4K length for env is enoug
h, this length must be the same as IPL's env when using fastboot. // 0x000
20000
#define CONFIG_ENV_OFFSET_REDUND CONFIG_MSTAR_ENV_NAND_REDUND_OFFSET
#define CONFIG_MSTAR_ENV_NAND_REDUND_OFFSET ms_nand_env_redund_offset
#endif


#define CONFIG_CMD_SPINAND_CIS
#define CONFIG_CMD_UBI
/* #define CONFIG_CMD_UBIFS */
#define CONFIG_UBI_MWRITE
#define MTDIDS_DEFAULT                  "nand0=nand0"    /* "nor0=physmap-
flash.0,nand0=nand" */
/*      must be different from real partition to test NAND partition funct
ion */
#define MTDPARTS_DEFAULT                "mtdparts=nand0:0xC0000@0x140000(N
PT),-(UBI)"
/*      #define MTDPARTS_DEFAULT    "mtdparts=nand0:0x60000@0x140000(IPL
0),0x60000(IPL1),0x60000(IPL_CUST0),0x60000(IPL_CUST1),0xC0000(UBOOT0),0xC
0000(UBOOT1),0x60000(ENV),0x340000(KERNEL),0x340000(RECOVERY),-(UBI)"*/
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从Release_to_customer.sh中可以看到，当flash类型选择为nand，芯片类型选择为ssd201，并且不开

启fastboot模式时，在project目录下执行了：


Release_to_customer.sh脚本内容如下：


rootfs


./setup_config.sh ./configs/nvr/i2m/8.2.1/spinand.glibc.011a.1281

Plain Text 复制代码
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我们进入配置文件：

#build project
cd ${RELEASEDIR}/project
if [ "${flashtype}" = "nor" ]; then
        if [ "${fastboot}" = "fastboot" ]; then
                echo test fastboot
                ./setup_config.sh ./configs/nvr/i2m/8.2.1/nor.glibc-ramfs.
011a.64
        else
                if [ "${chip}" = "ssd201" ]; then
                        ./setup_config.sh ./configs/nvr/i2m/8.2.1/nor.glib
c-squashfs.011a.64
                fi
                if [ "${chip}" = "ssd202" ]; then
                        ./setup_config.sh ./configs/nvr/i2m/8.2.1/nor.glib
c-squashfs.011a.128
                fi
        fi
else
        if [ "${fastboot}" = "fastboot" ]; then
                if [ "${chip}" = "ssd201" ]; then
                        ./setup_config.sh ./configs/nvr/i2m/8.2.1/spinand.
ram-glibc-squashfs.011a.64
                elif [ "${chip}" = "ssd202" ]; then
                        ./setup_config.sh ./configs/nvr/i2m/8.2.1/spinand.
ram-glibc-squashfs.011a.128
                fi
        else
                if [ "${chip}" = "ssd201" ]; then
                        ./setup_config.sh ./configs/nvr/i2m/8.2.1/spinand.
glibc.011a.64
                fi
                if [ "${chip}" = "ssd202" ]; then
                        ./setup_config.sh ./configs/nvr/i2m/8.2.1/spinand.
glibc.011a.128
                fi
        fi


fi
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1. IMAGE_CONFIG(分区配置)=spinand.ubifs.p2.partition.config


2. CUSTOMER_TAILOR(APP配置)=nvr_i2m_display_glibc_tailor.mk


3. BOOTLOGO_FILE(logo文件名)=sigmastar1024_600.jpg

4. DISP_OUT_NAME(屏幕型号)=SAT070CP50


1.1. IMAGE_CONFIG


vi project/configs/nvr/i2m/8.2.1/spinand.glibc.011a.1281

Plain Text 复制代码

vi project/image/configs/i2m/spinand.ubifs.p2.partition.config1

Plain Text 复制代码
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IMAGE_LIST = cis ipl ipl_cust uboot logo kernel rootfs miservice customer 
appconfigs
OTA_IMAGE_LIST = ipl ipl_cust uboot logo kernel miservice customer appconf
igs
FLASH_TYPE = spinand
UBI_MLC_TYPE = 0
PAT_TABLE  = ubi
PHY_TEST = no
#overwrite CIS(BL0,BL1,UBOOT) PBAs
CIS_PBAs = 10 0 0
CIS_COPIES = 5
USR_MOUNT_BLOCKS:=miservice customer appconfigs
ENV_CFG = /dev/mtd6 0x00000 0x1000 0x20000 2
ENV_CFG1 = /dev/mtd7 0x00000 0x1000 0x20000 2


cis$(RESOUCE) = $(IMAGEDIR)/cis.bin
cis$(DATASIZE) = 0x40000
cis$(PGSIZE) = 2k
cis$(COPIES) = $(CIS_COPIES)
cis$(PATSIZE) = 0x140000
cis$(BOOTTAB) = $(ipl$(MTDPART)),$(ipl_cust$(MTDPART)),$(uboot$(MTDPART))
cis$(SYSTAB) = $(key_cust$(MTDPART)),$(logo$(MTDPART)),$(kernel$(MTDPAR
T)),-(UBI)


ipl$(RESOUCE) = $(PROJ_ROOT)/board/$(CHIP)/boot/ipl/IPL.bin
ipl$(DATASIZE) = 0x20000
ipl$(COPIES) = 3
ipl$(BKCOUNT) = 2
ipl$(PATSIZE) = $(call multiplyhex, $(ipl$(COPIES)), $(ipl$(DATASIZE)))
ipl$(PATCOUNT) = 2
ipl$(MTDPART) = $(ipl$(DATASIZE))@$(cis$(PATSIZE))(IPL0)$(ipl$(BKCOUN
T)),$(ipl$(DATASIZE))(IPL1)$(ipl$(BKCOUNT))
ipl$(OTABLK) = /dev/mtd0 /dev/mtd1


ipl_cust$(RESOUCE) = $(PROJ_ROOT)/board/$(CHIP)/boot/ipl/IPL_CUST.bin
ipl_cust$(DATASIZE) = 0x20000
ipl_cust$(COPIES) = 3
ipl_cust$(BKCOUNT) = 2
ipl_cust$(PATSIZE) = $(call multiplyhex, $(ipl_cust$(COPIES)), $(ipl_cust
$(DATASIZE)))
ipl_cust$(PATCOUNT) = 2
ipl_cust$(MTDPART) = $(ipl_cust$(DATASIZE))(IPL_CUST0)$(ipl_cust$(BKCOUN
T)),$(ipl_cust$(DATASIZE))(IPL_CUST1)$(ipl_cust$(BKCOUNT))
ipl_cust$(OTABLK) = /dev/mtd2 /dev/mtd3



1

2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28

29
30
31
32
33
34
35

36
37

38
39

Plain Text 复制代码

深
圳
触
觉
智
能
科
技
有
限
公
司
 

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn



13

uboot$(RESOUCE) = $(PROJ_ROOT)/board/$(CHIP)/boot/$(FLASH_TYPE)/uboot/u-bo
ot_$(FLASH_TYPE).xz.img.bin
uboot$(DATASIZE) = 0x40000
uboot$(COPIES) = 3
uboot$(BKCOUNT) = 4
uboot$(PATSIZE) = $(call multiplyhex, $(uboot$(COPIES)), $(uboot$(DATASIZ
E)))
uboot$(PATCOUNT) = 2
uboot$(MTDPART) =$(uboot$(DATASIZE))(UBOOT0)$(uboot$(BKCOUNT)),$(uboot$(DA
TASIZE))(UBOOT1)$(uboot$(BKCOUNT)),0x20000(ENV0)1,0x20000(ENV1)1
uboot$(OTABLK) = /dev/mtd4 /dev/mtd5


wifi24mclkcmd = mw 1f001cc0 11
wifirstoffcmd = gpio out 71 0
wifirstoncmd = gpio out 71 1


key_cust$(PATSIZE) = 0x20000
key_cust$(MTDPART) = $(key_cust$(PATSIZE))(KEY_CUST)


logo$(RESOUCE) = $(IMAGEDIR)/logo
logo$(PATSIZE) = 0x60000
logo$(MTDPART) = $(logo$(PATSIZE))(LOGO)
logo$(OTABLK) = /dev/mtd9


kernel$(RESOUCE)   = $(PROJ_ROOT)/release/$(PRODUCT)/$(CHIP)/$(BOARD)/$(TO
OLCHAIN)/$(TOOLCHAIN_VERSION)/bin/kernel/$(FLASH_TYPE)/uImage.xz
kernel$(PATSIZE)   = 0x500000
kernel$(BOOTENV)   = $(KERNEL_BOOT_ENV)
kernel$(MTDPART)   = $(kernel$(PATSIZE))(KERNEL),$(kernel$(PATSIZE))(RECOV
ERY)
kernel$(OTABLK) = /dev/mtd10


rootfs$(RESOUCE)   = $(OUTPUTDIR)/rootfs
rootfs$(FSTYPE)    = ubifs
rootfs$(PATSIZE)   = 0x6200000
rootfs$(BOOTENV)   = console=ttyS0,115200 ubi.mtd=UBI,2048 root=ubi:rootf
s rw rootfstype=ubifs init=/linuxrc rootwait=1


miservice$(RESOUCE)   = $(OUTPUTDIR)/miservice/config
miservice$(FSTYPE)    = ubifs
miservice$(PATSIZE)   = 0xA00000
miservice$(MOUNTTG)  = /config
miservice$(MOUNTPT)  = ubi0:miservice
miservice$(OPTIONS)   = rw
miservice$(OTABLK)    = /dev/ubi0_1


customer$(RESOUCE)   = $(OUTPUTDIR)/customer
customer$(FSTYPE)    = ubifs
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CIS： SPI-NAND 独有的分区，保存在 flash 0 地址的位置，它包含两部分内容，一部分是 spinand 

info，保存 spinand 的一 些基本信息，例如 block page count、block count 等，这些信息会根据 spi 

nand 的种类而改变，另一部分是 partinifo，保 存的分区信息，这些信息都是给 rom code 读取的，

rom code 通过读取正确的 spinand 参数和分区信息，从而知道 IPL 的位置把整个系统跑起来。


IPL: IPL 分区的作用与 SPI-NOR 分区一样，但是从上图可知，IPL 在 spi-nand 上保存了六份，每个 

block 一份，目的是为 


了防止坏块而做的备份。 


IPL_CUS： 作用同 SPI-NOR，会有两个分区，IPL_CUS0, IPL_CUS1,每个分区中各三份 IPL_CUS 的 

data。 


UBOOT： UBOOT 的二进制文件存放分区, 会有两个分区，每个分区中一份 data。 


ENV： UBOOT 的环境变量存放分区。 


KERNEL：存放内核的二进制文件。


LOGO: 在 NVR 设备上会使用，存放的是开机 logo 相关的配置。 


ROOTFS： rootfs配置


UBI: UBI的内容在上图分区表中不会显示出来，UBI中会创建多个ubifs格式的子分区，客户可以根据需要

自行创建。Spinand 的 miservice 分区就是放在 UBI 中。


以上是 BOOT 相关的分区信息，这部分无法任意修改。


1.2. CUSTOMER_TAILOR


customer$(PATSIZE)   = 0x6500000
customer$(MOUNTTG)  = /customer
customer$(MOUNTPT)  = ubi0:customer
customer$(OPTIONS)   = rw
customer$(OTABLK)    = /dev/ubi0_2


appconfigs$(RESOUCE)   = $(OUTPUTDIR)/appconfigs
appconfigs$(FSTYPE)    = ubifs
appconfigs$(PATSIZE)   = 0x400000
appconfigs$(MOUNTTG)  = /appconfigs
appconfigs$(MOUNTPT)  = ubi0:appconfigs
appconfigs$(OPTIONS)   = rw
appconfigs$(OTABLK)    = /dev/ubi0_3
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vi project/release/customer_tailor/nvr_i2m_display_glibc_tailor.mk1

Plain Text 复制代码
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这个文件是关于一些内核模块的开关和APP的配置。比如interface_wlan，在构建rootfs时会根据它是否

enable来加入wifi功能：


include $(PROJ_ROOT)/release/customer_tailor/nvr_default.mk
#interface_ai:=disable
#interface_ao:=disable
#interface_gfx:=disable
interface_hdmi:=disable
#interface_divp:=disable
#interface_disp:=disable
#interface_panel:=disable
interface_rgn:=disable
interface_shadow:=disable
interface_uac:=disable
interface_vdf:=disable
interface_vdisp:=disable
interface_vdec:=enable
interface_venc:=enable
interface_wlan:=enable


misc_fbdev:=enable
#verify_zk_full_security:=enable
#mhal
#mhal_aio:=disable
mhal_csi:=disable
#mhal_disp:=disable
#mhal_divp:=disable
mhal_isp:=disable
mhal_ispalgo:=disable
mhal_ispmid:=disable
mhal_ldc:=disable
mhal_mload:=disable
#mhal_panel:=disable
#mhal_rgn:=disable
mhal_sensorif:=disable
#mhal_venc:=disable
mhal_vif:=disable
mhal_vpe:=disable
mhal_hdmitx:=disable


verify_jpeg2disp=enable
verify_disp_init=disable


interface_alsa=enable
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我们

内存大小问题

Flash分区大小问题


buildroot文件系统定制


ETH


WIFI


LCD


音频配置

vi project/image/configs/i2m/rootfs.mk1

Plain Text 复制代码

boot/include/configs/infinity2m.h1
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UART


GPIO


PWM


I2C


SPI


RTC的配置


WATCHDOG的配置


QT移植


母片制作

可以看到，启动logo图片BOOTLOGO_FILE应该放在project/board/ini/misc/目录下：


我们在配置bootlogo的时候，需要指定屏幕的型号，才能有效，而DISP_OUT_NAME是指定的屏幕型

号，而disp_data_main.c设置对应的屏幕型号





在project/image/makefiletools/bin/dispcfggen用于初始化屏幕





而DISP_OUT_NAME作为参数传递给dispcfggen，而dispcfggen由

project/image/makefiletools/src/rawgenerator/disp_data_main.c生成


1.3. BOOTLOGO_FILE


1.4. DISP_OUT_NAME


vi project/image/makefiletools/src/rawgenerator/disp_data_main.c1

Plain Text 复制代码
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进入Linux系统，使用free -m 命令发现内存小于128M（SSD202的内存大小为128M）：





了解到内存大小分配给了MMA、Linux系统和一部分reserved（这部分一般不用去修改），即：


DDR total memory = linux memory(cat /proc/meminfo的MemTotal) + mma(mma_heap_name0 + 

MMU_MMA) + kernel reserved


在Uboot中，可以看到MMA的大小默认设置为0x1000000=16M：


因此通过减少MMA的大小来增加Linux系统可用内存，我们先在uboot下修改MMA大小，验证上面的公

式：

我们可以直接在：project/configs/nvr/i2m/8.2.1/spinand.glibc.011a.128修改我们的MMA之


内存大小的问题

vi project/configs/nvr/i2m/8.2.1/spinand.glibc.011a.1281

Plain Text 复制代码
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这里我们所减了6M，对应的linux的内存就增加了6M。





同时，可以了解到kernel reserved的大小为128M-110-10M=8M。这一部分应该等于0x80000000

（128M）- 0x7800000。


使用df -h 查看分区的情况，我们可以看到rootfs的内存有85.6M：





这个分区是针对SSD202的256M Flash的可以在：

project/image/configs/i2m/spinand.ubifs.p2.partition.config_256M查看到分区的情况，注意在脚本

里spinand.ubifs.p2.partition.config_256M配置会覆盖spinand.ubifs.p2.partition.config，所以想要修

改的话，应该在spinand.ubifs.p2.partition.config_256M修改：


Flash分区大小问题


地址范围 0x0-0x6E00000
 0x6E00000-

0x7800000


0x7800000-

0x8000000


作用 linux（110M）
 mma（10M）
 kernel resverved

（8M）
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cis$(RESOUCE) = $(IMAGEDIR)/cis.bin
cis$(DATASIZE) = 0x40000
cis$(PGSIZE) = 2k
cis$(COPIES) = $(CIS_COPIES)
cis$(PATSIZE) = 0x140000
cis$(BOOTTAB) = $(ipl$(MTDPART)),$(ipl_cust$(MTDPART)),$(uboot$(MTDPART))
cis$(SYSTAB) = $(key_cust$(MTDPART)),$(logo$(MTDPART)),$(kernel$(MTDPAR
T)),-(UBI)


ipl$(RESOUCE) = $(PROJ_ROOT)/board/$(CHIP)/boot/ipl/IPL.bin
ipl$(DATASIZE) = 0x20000
ipl$(COPIES) = 3
ipl$(BKCOUNT) = 2
ipl$(PATSIZE) = $(call multiplyhex, $(ipl$(COPIES)), $(ipl$(DATASIZE)))
ipl$(PATCOUNT) = 2
ipl$(MTDPART) = $(ipl$(DATASIZE))@$(cis$(PATSIZE))(IPL0)$(ipl$(BKCOUN
T)),$(ipl$(DATASIZE))(IPL1)$(ipl$(BKCOUNT))
ipl$(OTABLK) = /dev/mtd0 /dev/mtd1


ipl_cust$(RESOUCE) = $(PROJ_ROOT)/board/$(CHIP)/boot/ipl/IPL_CUST.bin
ipl_cust$(DATASIZE) = 0x20000
ipl_cust$(COPIES) = 3
ipl_cust$(BKCOUNT) = 2
ipl_cust$(PATSIZE) = $(call multiplyhex, $(ipl_cust$(COPIES)), $(ipl_cust
$(DATASIZE)))
ipl_cust$(PATCOUNT) = 2
ipl_cust$(MTDPART) = $(ipl_cust$(DATASIZE))(IPL_CUST0)$(ipl_cust$(BKCOUN
T)),$(ipl_cust$(DATASIZE))(IPL_CUST1)$(ipl_cust$(BKCOUNT))
ipl_cust$(OTABLK) = /dev/mtd2 /dev/mtd3


uboot$(RESOUCE) = $(PROJ_ROOT)/board/$(CHIP)/boot/$(FLASH_TYPE)/uboot/u-bo
ot_$(FLASH_TYPE).xz.img.bin
uboot$(DATASIZE) = 0x40000
uboot$(COPIES) = 3
uboot$(BKCOUNT) = 4
uboot$(PATSIZE) = $(call multiplyhex, $(uboot$(COPIES)), $(uboot$(DATASIZ
E)))
uboot$(PATCOUNT) = 2
uboot$(MTDPART) =$(uboot$(DATASIZE))(UBOOT0)$(uboot$(BKCOUNT)),$(uboot$(DA
TASIZE))(UBOOT1)$(uboot$(BKCOUNT)),0x20000(ENV0)1,0x20000(ENV1)1
uboot$(OTABLK) = /dev/mtd4 /dev/mtd5


wifi24mclkcmd = mw 1f001cc0 11
wifirstoffcmd = gpio out 71 0
wifirstoncmd = gpio out 71 1
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key_cust$(PATSIZE) = 0x20000
key_cust$(MTDPART) = $(key_cust$(PATSIZE))(KEY_CUST)


logo$(RESOUCE) = $(IMAGEDIR)/logo
logo$(PATSIZE) = 0x60000
logo$(MTDPART) = $(logo$(PATSIZE))(LOGO)
logo$(OTABLK) = /dev/mtd9


kernel$(RESOUCE)   = $(PROJ_ROOT)/release/$(PRODUCT)/$(CHIP)/$(BOARD)/$(TO
OLCHAIN)/$(TOOLCHAIN_VERSION)/bin/kernel/$(FLASH_TYPE)/uImage.xz
kernel$(PATSIZE)   = 0x500000
kernel$(BOOTENV)   = $(KERNEL_BOOT_ENV)
kernel$(MTDPART)   = $(kernel$(PATSIZE))(KERNEL),$(kernel$(PATSIZE))(RECOV
ERY)
kernel$(OTABLK) = /dev/mtd10


rootfs$(RESOUCE)   = $(OUTPUTDIR)/rootfs
rootfs$(FSTYPE)    = ubifs
rootfs$(PATSIZE)   = 0x6200000
rootfs$(BOOTENV)   = console=ttyS0,115200 ubi.mtd=UBI,2048 root=ubi:rootf
s rw rootfstype=ubifs init=/linuxrc rootwait=1


miservice$(RESOUCE)   = $(OUTPUTDIR)/miservice/config
miservice$(FSTYPE)    = ubifs
miservice$(PATSIZE)   = 0xA00000
miservice$(MOUNTTG)  = /config
miservice$(MOUNTPT)  = ubi0:miservice
miservice$(OPTIONS)   = rw
miservice$(OTABLK)    = /dev/ubi0_1


customer$(RESOUCE)   = $(OUTPUTDIR)/customer
customer$(FSTYPE)    = ubifs
customer$(PATSIZE)   = 0x6500000
customer$(MOUNTTG)  = /customer
customer$(MOUNTPT)  = ubi0:customer
customer$(OPTIONS)   = rw
customer$(OTABLK)    = /dev/ubi0_2


appconfigs$(RESOUCE)   = $(OUTPUTDIR)/appconfigs
appconfigs$(FSTYPE)    = ubifs
appconfigs$(PATSIZE)   = 0x400000
appconfigs$(MOUNTTG)  = /appconfigs
appconfigs$(MOUNTPT)  = ubi0:appconfigs
appconfigs$(OPTIONS)   = rw
appconfigs$(OTABLK)    = /dev/ubi0_3
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不难发现，虽然分区表给rootfs中分配的了98M，但用df -h 看到只有85.6M，这是因为一部分用于分区

了，就好像我们买了32G的U盘，其实真实的内存确实少了很多。


我们可以对其进行修改，来修改分区的大小，这里以rootfs为例，这边把98M->88M，缩小10M，也就

是修改为0x5800000。修改后，我们看到我们开发板的内rootfs将近缩小了10M





分区
 大小

cis
 0x40000=256K


ipl
 0x20000=128K


ipl_cust
 0x20000=128K


uboot
 0x40000=256K


key_cust
 0x20000=128K


logo
 0x60000=384K


kernel
 0x500000=5M


rootfs
 0x6200000=98M


miservice
 0xA00000=10M


customer
 0x6500000=101M


appconfigs
 0x400000=4M
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系统起来后，我想创建一个文件，发现失败了，原因是文件系统是只读的：

我们可以在project/image/configs/i2m/spinand.ubifs.p2.partition.config_256M修改为


如果我把ro改成rw，应该就可以把rootfs设置为可读可写属性了：


我们可以使用buildroot去定制一些我们所需要的功能，如添加wifi功能，wifi自启动连接，添加界面账号

密码等功能。首先去我们的官网下载我们的buildroothttps://buildroot.org/downloads/


 


 文件系统只读问题


buildroot文件系统定制
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解压并进入buildroot进行配置


我么们根据ssd202来进行配置：


vi buildroot-2023.051

Plain Text 复制代码

ARCH=arm make menuconfig1

Plain Text 复制代码
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上面是基础配置，如果需要配置登录的密码设置，我们进入System configuration在子菜单中，找到

Enable root login with password选项选中，然后我们在 root password上填写我们的密码即可。


等编译完成之后，他会把编译好的rootfs.tar放到output/images/下。


│ │Target options  ---> 
│ │      Target Architecture (ARM (little endian))  --->         
│ │      Target Architecture Variant (cortex-A7)  --->          
│ │      Floating point strategy (NEON)  --->                    


│ │Toolchain  --->
│ │          Toolchain type (External toolchain)  --->                    
                             
│ │          *** Toolchain External Options ***                           
                             
│ │          Toolchain (Custom toolchain)  ---> 
│ │          (/home/cainiaocl/work/SSD20X/PurPle-Pi-R1/toolchain/gcc-arm-
8.2-2018.08-x86_64-arm-linux-gnueabihf/
│ │          (arm-linux-gnueabihf) Toolchain prefix                       
                 
│ │          External toolchain gcc version (8.x)  --->                   
                 
│ │          External toolchain kernel headers series (4.18.x)  --->      
                 
│ │          External toolchain C library (glibc)  --->                   
                 
│ │   	 	  [*] Toolchain has SSP support? (NEW)                           
               
│ │   	 	  [*]   Toolchain has SSP strong support? (NEW)                  
               
│ │   	 	  [*] Toolchain has RPC support? (NEW)                           
               
│ │   	 	  [*] Toolchain has C++ support?                                 
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，现在我们把buildroot生成的rootfs.tar替换我们的project/image/rootfs/rootfs.tar.gz即可.但这里需要

注意的是，buildroot生成的rootfs.tar解压后是散包，没有套一层rootfs目录，但是我们项目下的

rootfs.tar.gz却是由套一层rootfs，所以我们先把buildroot生成的rootfs.tar套一层目录：


然后再替换我们项目想的rootfs.tar.gz:


替换完成后，我们编译一下固件

我们这款ssd202的开发板，已经有配置快速启动模式的的脚本了


快速启动模式fastboot


mkdir rootfs
tar -xvf rootfs.tar -C rootfs/
tar -cvf rootfs.tar.gz ./rootfs

1
2
3

Plain Text 复制代码

cp rootfs.tar.gz  ../../../project/image/rootfs/1

Plain Text 复制代码

./Release_to_customer.sh -f nand -p ssd202 -m 2561

Plain Text 复制代码

vi Release_to_customer.sh1

Plain Text 复制代码
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我们只需要在运行脚本的时候添加：

同时，切换fastnoots需要修改下：


更新启动后，可以看到启动过程跳过了 uboot。


关闭网络功能，也能加快开机时间：

LCD配置


# ./Release_to_customer.sh -f nand -p ssd202 -q fastboot -m 2561

Plain Text 复制代码

vi project/image/configs/i2m/rootfs_fastboot.mk1

Plain Text 复制代码

setenv autoestar 0
saveenv

1
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假设我们配置的屏幕信息是：720x1280，60fps、RGB888像素格式、4lane


我们需要配置MIPI屏幕，从原理图可以看出我们使用到的引脚是TTL1~15,且用到的数据时钟线是

TTL6~15也就是D0P/N、D1P/N、D2P/N、D3P/N、CKP/N，这4个lane和1clk：


kernel配置(dts配置)


点屏流程

dts的配置
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根据原理图可以看出，我们需要把屏幕配置成MIPI_MODE_1


需要把引脚配置成MIPI模式：


vi kernel/arch/arm/boot/dts/infinity2m-ssc011a-s01a-padmux-rgb565-rmii-doub
lenet.dtsi

1

Plain Text 复制代码
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修改屏幕分辨率为720x1280


自启动的话，把jpeg2disp的enable，并且把disp_init给disable


1）我们配置屏参文件，我们需要知道屏幕的这些信息：

1. 分辨率：720x1280


project的配置


jpeg2disp的配置


配置屏参文件

 project/board/i2m/SSC011A-S01A/config/fbdev.ini1

Plain Text 复制代码

vi project/release/customer_tailor/nvr_i2m_display_glibc_tailor.mk1

Plain Text 复制代码
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2. HSyncWidth：30 ；HSyncBackPorch：30 ；HSyncFrontPorch：60


3. VSyncWidth：4  ；VSyncBackPorch：12 ；HVyncFrontPorch：18


4. 帧：60HZ


5. date-lane：4


6. 像素格式：rgb888


2）打开我们的屏参文件，根据我们得到分辨率以及屏幕时钟等这些信息，直接这里替换：

3）像素时钟和数据lane直接替换，


4）如果在你的数据lane中，屏幕接口上的DxP和DxN是跟开发板上的DxP和DxN是相反的话，我们修改

这个为2,2,2,2,2,
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5）配置MI_PANEL_ChannelSwapType_e


在我们结构体中我们通道的顺序就是这样，从上到下clk、lane3、Lane2、Lane1、Lane0。


需要参考实际的硬件连接配置：




我们TTL对应的枚举情况：


1.  typedef struct  
2.  {  
5.      MI_PANEL_ChannelSwapType_e eCh0;   //--> CLK 栏位(CKN/P)  
6.      MI_PANEL_ChannelSwapType_e eCh1;   //--> Lane3栏位(D3N/P) 
7.      MI_PANEL_ChannelSwapType_e eCh2;   //--> Lane2栏位(D2N/P)
8.      MI_PANEL_ChannelSwapType_e eCh3;   //--> Lane1栏位(D1N/P)
9.      MI_PANEL_ChannelSwapType_e eCh4;   //--> Lane0栏位(D0N/P) 
10. }MI_PANEL_ParamConfig_t;
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所以，从原理图看：

我们的CKN/P对应的是TTL10和TTL11，对应的是E_MI_PNL_CH_SWAP_2，所以第一个枚举值是2，


我们的D3N/P对应的是TTL14和TTL15，对应的是E_MI_PNL_CH_SWAP_4，所以第一个枚举值是4


我们的D2N/P对应的是TTL12和TTL13，对应的是E_MI_PNL_CH_SWAP_3，所以第一个枚举值是3，


我们的D1N/P对应的是TTL8和TTL9，对应的是E_MI_PNL_CH_SWAP_1，所以第一个枚举值是1，


我们的D0N/P对应的是TTL6和TTL7，对应的是E_MI_PNL_CH_SWAP_0，所以第一个枚举值是0，


参考屏参文件如下：

芯片内部默认情况下对应的pin是：
Lane0对应的是PAD_TTL6/7 → E_MI_PNL_CH_SWAP_0 （对应枚举值是0）
Lane1对应的是PAD_TTL8/9 → E_MI_PNL_CH_SWAP_1 （对应枚举值是1）
Lane2对应的是PAD_TTL12/13 → E_MI_PNL_CH_SWAP_3 （对应枚举值是3）
Lane3对应的是PAD_TTL14/15 → E_MI_PNL_CH_SWAP_4 （对应枚举值是4）
Clk对应的是PAD_TTL10/11 → E_MI_PNL_CH_SWAP_2 （对应枚举值是2）
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Plain Text 复制代码

m_ucCl	 	 	 	 Clk  lane  selection(default:2) 0:select chn0 1:select chn1 
2:select chn2 3:select chn3 4:select chn4
m_ucDataLane0	data lane0 selection(default:4) 0:select chn0 1:select chn1 
2:select chn2 3:select chn3 4:select chn4
m_ucDataLane1	data lane1 selection(default:3) 0:select chn0 1:select chn1 
2:select chn2 3:select chn3 4:select chn4
m_ucDataLane2	data lane2 selection(default:1) 0:select chn0 1:select chn1 
2:select chn2 3:select chn3 4:select chn4
m_ucDataLane3	data lane3 selection(default:0) 0:select chn0 1:select chn1 
2:select chn2 3:select chn3 4:select chn4
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#include "mi_panel_datatype.h"


#define FLAG_DELAY            0xFE
#define FLAG_END_OF_TABLE     0xFF   // END OF REGISTERS MARKER


#define HPW (8)
#define HBP (24)
#define HFP (16)
#define VPW (68) 
#define VBP (120)
#define VFP (88)


#define FPS (60)
#define HDA (720)
#define VDA (1280)




MI_PANEL_ParamConfig_t stPanelParam =
{
    "WT070BM24_800x1280_60", // const char *m_pPanelName;                
///<  PanelName
    0, //MS_U8 m_bPanelDither :1;                 ///<  PANEL_DITHER, kee
p the setting
    E_MI_PNL_LINK_MIPI_DSI, //MHAL_DISP_ApiPnlLinkType_e m_ePanelLinkTyp
e   :4;  ///<  PANEL_LINK


    ///////////////////////////////////////////////
    // Board related setting
    ///////////////////////////////////////////////
    1,  //MS_U8 m_bPanelDualPort  :1;              ///<  VOP_21[8], MOD_4
A[1],    PANEL_DUAL_PORT, refer to m_bPanelDoubleClk
    0,  //MS_U8 m_bPanelSwapPort  :1;              ///<  MOD_4A[0],      
         PANEL_SWAP_PORT, refer to "LVDS output app note" A/B channel swa
p
    0,  //MS_U8 m_bPanelSwapOdd_ML    :1;          ///<  PANEL_SWAP_ODD_M
L
    0,  //MS_U8 m_bPanelSwapEven_ML   :1;          ///<  PANEL_SWAP_EVEN_
ML
    0,  //MS_U8 m_bPanelSwapOdd_RB    :1;          ///<  PANEL_SWAP_ODD_R
B
    0,  //MS_U8 m_bPanelSwapEven_RB   :1;          ///<  PANEL_SWAP_EVEN_
RB


    0,  //MS_U8 m_bPanelSwapLVDS_POL  :1;          ///<  MOD_40[5], PANEL
_SWAP_LVDS_POL, for differential P/N swap
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    0,  //MS_U8 m_bPanelSwapLVDS_CH   :1;          ///<  MOD_40[6], PANEL
_SWAP_LVDS_CH, for pair swap
    0,  //MS_U8 m_bPanelPDP10BIT      :1;          ///<  MOD_40[3], PANEL
_PDP_10BIT ,for pair swap
    1,  //MS_U8 m_bPanelLVDS_TI_MODE  :1;          ///<  MOD_40[2], PANEL
_LVDS_TI_MODE, refer to "LVDS output app note"


    ///////////////////////////////////////////////
    // For TTL Only
    ///////////////////////////////////////////////
    0,  //MS_U8 m_ucPanelDCLKDelay;                ///<  PANEL_DCLK_DELAY
    0,  //MS_U8 m_bPanelInvDCLK   :1;              ///<  MOD_4A[4],      
             PANEL_INV_DCLK
    0,  //MS_U8 m_bPanelInvDE     :1;              ///<  MOD_4A[2],      
             PANEL_INV_DE
    0,  //MS_U8 m_bPanelInvHSync  :1;              ///<  MOD_4A[12],     
             PANEL_INV_HSYNC
    0,  //MS_U8 m_bPanelInvVSync  :1;              ///<  MOD_4A[3],      
             PANEL_INV_VSYNC


    ///////////////////////////////////////////////
    // Output driving current setting
    ///////////////////////////////////////////////
    // driving current setting (0x00=4mA, 0x01=6mA, 0x02=8mA, 0x03=12mA)
    1,  //MS_U8 m_ucPanelDCKLCurrent;              ///<  define PANEL_DCL
K_CURRENT
    1,  //MS_U8 m_ucPanelDECurrent;                ///<  define PANEL_DE_
CURRENT
    1,  //MS_U8 m_ucPanelODDDataCurrent;           ///<  define PANEL_ODD
_DATA_CURRENT
    1,  //MS_U8 m_ucPanelEvenDataCurrent;          ///<  define PANEL_EVE
N_DATA_CURRENT


    ///////////////////////////////////////////////
    // panel on/off timing
    ///////////////////////////////////////////////
    30,  //MS_U16 m_wPanelOnTiming1;                ///<  time between pa
nel & data while turn on power
    400,  //MS_U16 m_wPanelOnTiming2;                ///<  time between d
ata & back light while turn on power
    80,  //MS_U16 m_wPanelOffTiming1;               ///<  time between ba
ck light & data while turn off power
    30,  //MS_U16 m_wPanelOffTiming2;               ///<  time between da
ta & panel while turn off power


    ///////////////////////////////////////////////
    // panel timing spec.
    ///////////////////////////////////////////////

35

36

37

38
39
40
41
42
43

44

45

46

47
48
49
50
51
52

53

54

55

56
57
58
59
60

61

62

63

64
65
66
67

深
圳
触
觉
智
能
科
技
有
限
公
司
 

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn



37

    // sync related
    HPW,  //MS_U8 m_ucPanelHSyncWidth;               ///<  VOP_01[7:0], P
ANEL_HSYNC_WIDTH
    HBP,  //MS_U8 m_ucPanelHSyncBackPorch;           ///<  PANEL_HSYNC_BA
CK_PORCH, no register setting, provide value for query only


                                             ///<  not support Manuel VSy
nc Start/End now
                                             ///<  VOP_02[10:0] VSync sta
rt = Vtt - VBackPorch - VSyncWidth
                                             ///<  VOP_03[10:0] VSync en
d = Vtt - VBackPorch
    VPW,  //MS_U8 m_ucPanelVSyncWidth;               ///<  define PANEL_V
SYNC_WIDTH
    VBP,  //MS_U8 m_ucPanelVBackPorch;               ///<  define PANEL_V
SYNC_BACK_PORCH


    // DE related
    (HPW+HBP),  //MS_U16 m_wPanelHStart;                   ///<  VOP_04[1
1:0], PANEL_HSTART, DE H Start (PANEL_HSYNC_WIDTH + PANEL_HSYNC_BACK_PORC
H)
    (VPW+VBP),  //MS_U16 m_wPanelVStart;                   ///<  VOP_06[1
1:0], PANEL_VSTART, DE V Start
    HDA,  //MS_U16 m_wPanelWidth;                    ///< PANEL_WIDTH, D
E width (VOP_05[11:0] = HEnd = HStart + Width - 1)
    VDA,  //MS_U16 m_wPanelHeight;                   ///< PANEL_HEIGHT, D
E height (VOP_07[11:0], = Vend = VStart + Height - 1)


    // DClk related
    0,  //MS_U16 m_wPanelMaxHTotal;                ///<  PANEL_MAX_HTOTA
L. Reserved for future using.
    (HDA+HPW+HBP+HFP),  //MS_U16 m_wPanelHTotal;                   ///<  
VOP_0C[11:0], PANEL_HTOTAL
    0,  //MS_U16 m_wPanelMinHTotal;                ///<  PANEL_MIN_HTOTA
L. Reserved for future using.


    0,  //MS_U16 m_wPanelMaxVTotal;                ///<  PANEL_MAX_VTOTA
L. Reserved for future using.
    (VDA+VPW+VBP+VFP),  //MS_U16 m_wPanelVTotal;                   ///<  
VOP_0D[11:0], PANEL_VTOTAL
    0,  //MS_U16 m_wPanelMinVTotal;                ///<  PANEL_MIN_VTOTA
L. Reserved for future using.


    0,  //MS_U8 m_dwPanelMaxDCLK;                  ///<  PANEL_MAX_DCLK. 
Reserved for future using.
    ((unsigned long)(VDA+VPW+VBP+VFP)*(HDA+HPW+HBP+HFP)*FPS/1000000),  //
MS_U8 m_dwPanelDCLK;                     ///<  LPLL_0F[23:0], PANEL_DCLK 
         ,{0x3100_10[7:0], 0x3100_0F[15:0]}
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    0,  //MS_U8 m_dwPanelMinDCLK;                  ///<  PANEL_MIN_DCLK. 
Reserved for future using.
                                             ///<  spread spectrum
    0,  //MS_U16 m_wSpreadSpectrumStep;            ///<  move to board de
fine, no use now.
    0,  //MS_U16 m_wSpreadSpectrumSpan;            ///<  move to board de
fine, no use now.


    160,  //MS_U8 m_ucDimmingCtl;                    ///<  Initial Dimmin
g Value
    255,  //MS_U8 m_ucMaxPWMVal;                     ///<  Max Dimming Va
lue
    80,  //MS_U8 m_ucMinPWMVal;                     ///<  Min Dimming Val
ue


    0,  //MS_U8 m_bPanelDeinterMode   :1;          ///<  define PANEL_DEI
NTER_MODE,  no use now
    E_MI_PNL_ASPECT_RATIO_WIDE,  //MHAL_DISP_PnlAspectRatio_e m_ucPanelAs
pectRatio; ///<  Panel Aspect Ratio, provide information to upper layer a
pplication for aspect ratio setting.
  /*
    *
    * Board related params
    *
    *  If a board ( like BD_MST064C_D01A_S ) swap LVDS TX polarity
    *    : This polarity swap value =
    *      (LVDS_PN_SWAP_H<<8) | LVDS_PN_SWAP_L from board define,
    *  Otherwise
    *    : The value shall set to 0.
    */
    0,  //MS_U16 m_u16LVDSTxSwapValue;
    E_MI_PNL_TI_8BIT_MODE,  //MHAL_DISP_ApiPnlTiBitMode_e m_ucTiBitMode; 
                        ///< MOD_4B[1:0], refer to "LVDS output app note"
    E_MI_PNL_OUTPUT_8BIT_MODE,  //MHAL_DISP_ApiPnlOutPutFormatBitMode_e m
_ucOutputFormatBitMode;


    0,  //MS_U8 m_bPanelSwapOdd_RG    :1;          ///<  define PANEL_SWA
P_ODD_RG
    0,  //MS_U8 m_bPanelSwapEven_RG   :1;          ///<  define PANEL_SWA
P_EVEN_RG
    0,  //MS_U8 m_bPanelSwapOdd_GB    :1;          ///<  define PANEL_SWA
P_ODD_GB
    0,  //MS_U8 m_bPanelSwapEven_GB   :1;          ///<  define PANEL_SWA
P_EVEN_GB


    /**
    *  Others
    */
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我们要根据原理图，找出我们的LCD_RST和PWM_RST，这两个参数是背光和屏幕的引脚，通过使用该

引脚才会顺利的点亮我们的屏幕。通过我们的原理图，我们可以看出对应的引脚号是LCD_RST—

>GPIO86和PWM_RST—>GPIO4


所以，在我们的/home/cainiaocl/work/SSD20X/PurPle-Pi-

R1/sdk/verify/application/jpeg2disp/run.sh里配置我们的开机自启动屏幕：


我们如果想修改我们的生成图片的执行文件，我们就在：/home/cainiaocl/work/SSD20X/PurPle-Pi-

R1/sdk/verify/application/jpeg2disp/src/makefile下修改这个变量，更改我们的名称


jpegdisp的配置


    1,  //MS_U8 m_bPanelDoubleClk     :1;             ///<  LPLL_03[7], d
efine Double Clock ,LVDS dual mode
    0x001c848e,  //MS_U32 m_dwPanelMaxSET;                     ///<  defi
ne PANEL_MAX_SET
    0x0018eb59,  //MS_U32 m_dwPanelMinSET;                     ///<  defi
ne PANEL_MIN_SET
    E_MI_PNL_CHG_VTOTAL,  //MHAL_DISP_ApiPnlOutTimingMode_e m_ucOutTiming
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相对应的我们需要在/home/cainiaocl/work/SSD20X/PurPle-Pi-

R1/sdk/verify/application/jpeg2disp/image.mk下，修改对应的执行文件的名称，以及我们的图片名称


我们的图片文件应该放在：/home/cainiaocl/work/SSD20X/PurPle-Pi-

R1/sdk/verify/application/jpeg2disp/res


同时，我们把屏参文件放到该目录下：/home/cainiaocl/work/SSD20X/PurPle-Pi-

R1/sdk/verify/application/jpeg2disp/src


并srcsstardisp.c中把自己屏参文件添加上去同时屏蔽其他的屏参文件
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重新编译一下，即可

1）报错提示找不到-ljpeg，即libjpeg.so，但是在找到libjpeg.so.7：


报错提示找不到-ljpeg，即libjpeg.so，但是在找到libjpeg.so.7：


 做一个软链接即可：


重新编译并更新固件：

常见问题

./Release_to_customer.sh -f nand -p ssd2011

Plain Text 复制代码

# ls sdk/verify/application/jpeg2disp/lib1

Plain Text 复制代码

# cd sdk/verify/application/jpeg2disp/lib
# ln -s libjpeg.so.7 libjpeg.so
# ln -s libz.so.1 libz.so

1
2
3

Plain Text 复制代码
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2）屏幕不亮的解决办法：

第一，先检查背光是否有亮，没有亮就先打开背光，如果背光亮了没有显示图片，就把屏幕的LCD_RST

引脚给电，顺便测量LCD_RST和PWM_RST是否有电压能被控制，如果都没有问题，就查看自己的dts的

引脚模式是否有配置好。

第二，如果都还是不亮，查看是否有上电时序，有些屏幕有特殊要求，需要上电时序才会复位正确才能

亮屏

第三，在看看 检查开机logo是否有关掉。


第四，可能你的转接线太长导致数据传输不过来也有可能。

第五、分辨率HSyncWidth，HSyncBackPorch，HSyncFrontPorch，VSyncWidth，

VSyncBackPorch，HVyncFrontPorch，帧率，date-lane，像素格式是否正确。


第六、如果都还是有问题，去厂家把屏参对一下是否正确，且再用自检参数试一下，如果还是没反应，

可能出现硬件的问题去排查一下，根据原理图对底板跟转接板的元器件进行检测，是否有电压。

第七、或者你的内核没更新，你使用uname -a 查看一下，最新的编译内核的时间，如果不是最信的，

可能你编译固件的时候出现了内核错误，查看下日志，可能你忽略了。

第八，用示波器测试一下。

第九、如果有屏幕抖动，可能因为延迟或者帧率，适当修改即可。

第十、在调试tp的时候，我们需要通过测量中断脚也就是inr脚，在我们按压屏幕的时候，电压值会发生

变化。或者通过测量各个引脚，是否通电，也就是测量电阻值。

第十一、我们使用bootlogo，切换logo，存在短时间的黑屏：echo 1 > 

/sys/class/mstar/mdisp/bootlogo。


第十二、使用该命令查看屏参，看我们的屏参是否没有写好：cat 

proc/mi_modules/mi_panel/mi_panel0


第十三、我们进入该文件查看我们的分辨率是否正确：：vi config/fbdev.ini。


第十三、如果涉及纳秒级别的时序要求，需要在uboot，或者kernel上做点屏时序处理，在开发板上，

sleep精确度不高，存在误差，不能实现这个操作。


bootlogo配置


# cd -
# ./Release_to_customer.sh -f nand -p ssd202 -m 256

1
2

Plain Text 复制代码
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bootlogo配置相对简单，如果我们的屏幕已经点亮，并可以显示图片的话吗，我们需要在原来屏参的基

础上进行修改为适配bootlogo的屏参文件，变动不大只是修改下对应的结构体：
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// #include "mi_panel_datatype.h"


#ifndef SH8601A_454x454_MIPI_BOOTLOGO_H
#define SH8601A_454x454_BOOTLOGO_H


#define FLAG_DELAY            0xFE
#define FLAG_END_OF_TABLE     0xFF   // END OF REGISTERS MARKER


#define HPW (30)
#define HBP (30)
#define HFP (60)
#define VPW (4) 
#define VBP (12)
#define VFP (18)


#define FPS (60)
#define HDA (720)
#define VDA (1280)




MhalPnlParamConfig_t stPanelParam_U5505HA_WA0_720x1280 =
{
    "U5505HA_WA0_720x1280", // const char *m_pPanelName;                
///<  PanelName
#if !defined (__aarch64__)
    0,
#endif
	
	 0, //MS_U8 m_bPanelDither :1;                 ///<  PANEL_DITHER, keep 
the setting
    E_MHAL_PNL_LINK_MIPI_DSI, //MHAL_DISP_ApiPnlLinkType_e m_ePanelLinkTy
pe   :4;  ///<  PANEL_LINK


    ///////////////////////////////////////////////
    // Board related setting
    ///////////////////////////////////////////////
    1,  //MS_U8 m_bPanelDualPort  :1;              ///<  VOP_21[8], MOD_4
A[1],    PANEL_DUAL_PORT, refer to m_bPanelDoubleClk
    0,  //MS_U8 m_bPanelSwapPort  :1;              ///<  MOD_4A[0],      
         PANEL_SWAP_PORT, refer to "LVDS output app note" A/B channel swa
p
    0,  //MS_U8 m_bPanelSwapOdd_ML    :1;          ///<  PANEL_SWAP_ODD_M
L
    0,  //MS_U8 m_bPanelSwapEven_ML   :1;          ///<  PANEL_SWAP_EVEN_
ML

1
2
3
4
5
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7
8
9
10
11
12
13
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16
17
18
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20
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    0,  //MS_U8 m_bPanelSwapOdd_RB    :1;          ///<  PANEL_SWAP_ODD_R
B
    0,  //MS_U8 m_bPanelSwapEven_RB   :1;          ///<  PANEL_SWAP_EVEN_
RB


    0,  //MS_U8 m_bPanelSwapLVDS_POL  :1;          ///<  MOD_40[5], PANEL
_SWAP_LVDS_POL, for differential P/N swap
    0,  //MS_U8 m_bPanelSwapLVDS_CH   :1;          ///<  MOD_40[6], PANEL
_SWAP_LVDS_CH, for pair swap
    0,  //MS_U8 m_bPanelPDP10BIT      :1;          ///<  MOD_40[3], PANEL
_PDP_10BIT ,for pair swap
    1,  //MS_U8 m_bPanelLVDS_TI_MODE  :1;          ///<  MOD_40[2], PANEL
_LVDS_TI_MODE, refer to "LVDS output app note"


    ///////////////////////////////////////////////
    // For TTL Only
    ///////////////////////////////////////////////
    0,  //MS_U8 m_ucPanelDCLKDelay;                ///<  PANEL_DCLK_DELAY
    0,  //MS_U8 m_bPanelInvDCLK   :1;              ///<  MOD_4A[4],      
             PANEL_INV_DCLK
    0,  //MS_U8 m_bPanelInvDE     :1;              ///<  MOD_4A[2],      
             PANEL_INV_DE
    0,  //MS_U8 m_bPanelInvHSync  :1;              ///<  MOD_4A[12],     
             PANEL_INV_HSYNC
    0,  //MS_U8 m_bPanelInvVSync  :1;              ///<  MOD_4A[3],      
             PANEL_INV_VSYNC


    ///////////////////////////////////////////////
    // Output driving current setting
    ///////////////////////////////////////////////
    // driving current setting (0x00=4mA, 0x01=6mA, 0x02=8mA, 0x03=12mA)
    1,  //MS_U8 m_ucPanelDCKLCurrent;              ///<  define PANEL_DCL
K_CURRENT
    1,  //MS_U8 m_ucPanelDECurrent;                ///<  define PANEL_DE_
CURRENT
    1,  //MS_U8 m_ucPanelODDDataCurrent;           ///<  define PANEL_ODD
_DATA_CURRENT
    1,  //MS_U8 m_ucPanelEvenDataCurrent;          ///<  define PANEL_EVE
N_DATA_CURRENT


    ///////////////////////////////////////////////
    // panel on/off timing
    ///////////////////////////////////////////////
    30,  //MS_U16 m_wPanelOnTiming1;                ///<  time between pa
nel & data while turn on power
    400,  //MS_U16 m_wPanelOnTiming2;                ///<  time between d
ata & back light while turn on power
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    80,  //MS_U16 m_wPanelOffTiming1;               ///<  time between ba
ck light & data while turn off power
    30,  //MS_U16 m_wPanelOffTiming2;               ///<  time between da
ta & panel while turn off power


    ///////////////////////////////////////////////
    // panel timing spec.
    ///////////////////////////////////////////////
    // sync related
    HPW,  //MS_U8 m_ucPanelHSyncWidth;               ///<  VOP_01[7:0], P
ANEL_HSYNC_WIDTH
    HBP,  //MS_U8 m_ucPanelHSyncBackPorch;           ///<  PANEL_HSYNC_BA
CK_PORCH, no register setting, provide value for query only


                                             ///<  not support Manuel VSy
nc Start/End now
                                             ///<  VOP_02[10:0] VSync sta
rt = Vtt - VBackPorch - VSyncWidth
                                             ///<  VOP_03[10:0] VSync en
d = Vtt - VBackPorch
    VPW,  //MS_U8 m_ucPanelVSyncWidth;               ///<  define PANEL_V
SYNC_WIDTH
    VBP,  //MS_U8 m_ucPanelVBackPorch;               ///<  define PANEL_V
SYNC_BACK_PORCH


    // DE related
    (HPW+HBP),  //MS_U16 m_wPanelHStart;                   ///<  VOP_04[1
1:0], PANEL_HSTART, DE H Start (PANEL_HSYNC_WIDTH + PANEL_HSYNC_BACK_PORC
H)
    (VPW+VBP),  //MS_U16 m_wPanelVStart;                   ///<  VOP_06[1
1:0], PANEL_VSTART, DE V Start
    HDA,  //MS_U16 m_wPanelWidth;                    ///< PANEL_WIDTH, D
E width (VOP_05[11:0] = HEnd = HStart + Width - 1)
    VDA,  //MS_U16 m_wPanelHeight;                   ///< PANEL_HEIGHT, D
E height (VOP_07[11:0], = Vend = VStart + Height - 1)


    // DClk related
    0,  //MS_U16 m_wPanelMaxHTotal;                ///<  PANEL_MAX_HTOTA
L. Reserved for future using.
    (HDA+HPW+HBP+HFP),  //MS_U16 m_wPanelHTotal;                   ///<  
VOP_0C[11:0], PANEL_HTOTAL
    0,  //MS_U16 m_wPanelMinHTotal;                ///<  PANEL_MIN_HTOTA
L. Reserved for future using.


    0,  //MS_U16 m_wPanelMaxVTotal;                ///<  PANEL_MAX_VTOTA
L. Reserved for future using.
    (VDA+VPW+VBP+VFP),  //MS_U16 m_wPanelVTotal;                   ///<  
VOP_0D[11:0], PANEL_VTOTAL
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    0,  //MS_U16 m_wPanelMinVTotal;                ///<  PANEL_MIN_VTOTA
L. Reserved for future using.


    0,  //MS_U8 m_dwPanelMaxDCLK;                  ///<  PANEL_MAX_DCLK. 
Reserved for future using.
   ((unsigned long)(VDA+VPW+VBP+VFP)*(HDA+HPW+HBP+HFP)*FPS/1000000),  //M
S_U8 m_dwPanelDCLK;                     ///<  LPLL_0F[23:0], PANEL_DCLK  
        ,{0x3100_10[7:0], 0x3100_0F[15:0]}
    0,  //MS_U8 m_dwPanelMinDCLK;                  ///<  PANEL_MIN_DCLK. 
Reserved for future using.
                                             ///<  spread spectrum
    0,  //MS_U16 m_wSpreadSpectrumStep;            ///<  move to board de
fine, no use now.
    0,  //MS_U16 m_wSpreadSpectrumSpan;            ///<  move to board de
fine, no use now.


    160,  //MS_U8 m_ucDimmingCtl;                    ///<  Initial Dimmin
g Value
    255,  //MS_U8 m_ucMaxPWMVal;                     ///<  Max Dimming Va
lue
    80,  //MS_U8 m_ucMinPWMVal;                     ///<  Min Dimming Val
ue


    0,  //MS_U8 m_bPanelDeinterMode   :1;          ///<  define PANEL_DEI
NTER_MODE,  no use now
    E_MHAL_PNL_ASPECT_RATIO_WIDE,  //MHAL_DISP_PnlAspectRatio_e m_ucPanel
AspectRatio; ///<  Panel Aspect Ratio, provide information to upper laye
r application for aspect ratio setting.
  /*
    *
    * Board related params
    *
    *  If a board ( like BD_MST064C_D01A_S ) swap LVDS TX polarity
    *    : This polarity swap value =
    *      (LVDS_PN_SWAP_H<<8) | LVDS_PN_SWAP_L from board define,
    *  Otherwise
    *    : The value shall set to 0.
    */
    0,  //MS_U16 m_u16LVDSTxSwapValue;
    E_MHAL_PNL_TI_8BIT_MODE,  //MHAL_DISP_ApiPnlTiBitMode_e m_ucTiBitMod
e;                         ///< MOD_4B[1:0], refer to "LVDS output app no
te"
    E_MHAL_PNL_OUTPUT_8BIT_MODE,  //MHAL_DISP_ApiPnlOutPutFormatBitMode_
e m_ucOutputFormatBitMode;


    0,  //MS_U8 m_bPanelSwapOdd_RG    :1;          ///<  define PANEL_SWA
P_ODD_RG
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如果感兴趣的可以了解一下PurPle-Pi-

R1\project\image\makefiletools\src\rawgenerator\pnl\mhal_pnl_datatype.h和PurPle-Pi-

R1\project\release\include\mi_panel_datatype.h这两个文件


1）.拷贝屏参文件到project/image/makefiletools/src/rawgenerator/pnl


2）project/image/makefiletools/src/rawgenerator/disp_data_main.c，添加屏参的头文件以及修改

配置和添加屏参文件：

在修改配置的时候，我们可以看看定义的结构体变量中第一个是名称(随便取一般是屏幕型号)，第二个第

三个对应屏参文件的机构提

    0,  //MS_U8 m_bPanelSwapEven_RG   :1;          ///<  define PANEL_SWA
P_EVEN_RG
    0,  //MS_U8 m_bPanelSwapOdd_GB    :1;          ///<  define PANEL_SWA
P_ODD_GB
    0,  //MS_U8 m_bPanelSwapEven_GB   :1;          ///<  define PANEL_SWA
P_EVEN_GB



129

130

131
132
133
134

typedef struct
{
    const char *pName;
    MhalPnlParamConfig_t *pstMPnlParaConfig;
    MhalPnlMipiDsiConfig_t *pMipiDsiConfig;
}SS_SHEADER_TableHandler_t;
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U5505HA-WA0-720x1280-MIPI-bootlogo.h


3） 在project/board/ini/misc添加屏参图片


4） 在project/configs/nvr/i2m/8.2.1/spinand.glibc.011a.128修改下配置信息


注意：这里的U5505HA_WA0_720x1280，要对应disp_data_main.c截图里的名称和图片的名称，如上

图所示

5）配置完成之后编译一下：

6）如果发现开机启动的时候发现，图片没有起来，可能在uboot的时候没有使能背光和使能屏幕或者，

你使能引脚是低给电的话，就需要在uboot设置下，所以我们可以在

project/image/configs/i2m/script_nand.mk下添加：


# cd PurPle-Pi-R1/project/image/makefiletools/src/rawgenerator


# make
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7）然后重新一下固件


从TP的驱动IC的外观可以了解到，驱动IC型号为GT911：


很幸运，这并不是一个罕见的型号，内核已经自带驱动：

把我们的屏幕去放置到：projecg/drivers/input/touchscreen下：


TP配置


配置kernel


# ./Release_to_customer.sh -f nand -p ssd202 -m 2561
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kernel需要配置加载GT911的驱动：


保存一下配置：

从原理图得知，I2C使用了GPIO1、GPIO2、GPIO12和GPIO13，根据SSD201 HW Checklist V6.xlsx，

GPIO2和GPIO3该组I2C为I2C1，且MODE为1，因此I2C部分DTS作如下修改:


配置DTS


# cd kernel
# ARCH=arm make menuconfig

1
2

Plain Text 复制代码

Location:
  -> Device Drivers  --->  
      -> Input device support  ---> 
          -> [*] Touchscreens  ---> 
              ->	 <*> Goodix I2C touchscreen
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 cp .config arch/arm/configs/infinity2m_spinand_ssc011a_s01a_minigui_double
net_defconfig
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在设备书中配置I2C1，MODE 1模式：





然后需要配置i2c1的节点信息：


vi kernel/arch/arm/boot/dts/infinity2m-ssc011a-s01a-padmux-rgb565-rmii-doub
lenet.dtsi

1

Plain Text 复制代码

vi kernel/arch/arm/boot/dts/infinity2m-ssc011a-s01a-rgb565-rmii-doublenet.d
tsi
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在i2c1下配置对应驱动的节点信息


goodix_gt911@5D{ //EVB i2c-padmux=2 SSD201_SZ_DEMO_BOARD i2c-padmux=1
    compatible = "goodix,gt911";
    reg = <0x5D>;
    goodix_rst = <PAD_GPIO12>; //SSD201_SZ_DEMO_BOARD PAD_GPIO1  EVB PAD_G
PIO0
    goodix_int = <PAD_GPIO13>; //SSD201_SZ_DEMO_BOARD PAD_GPIO13  EVB PAD_
GPIO1
    interrupts-extended = <&ms_gpi_intc INT_GPI_FIQ_GPIO13>;
    interrupt-names = "goodix_int";
};
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配置完后，重新编译并更新kernel：


系统起来后，可以看到/dev/input下有一个event0：





并且在cat它的时候，点击TP，会输出信息：





我们使用测试程序：

验证

测试：

./Release_to_customer.sh -f nand -p ssd202 -m 2561

Plain Text 复制代码

# ls /dev/input1

Plain Text 复制代码

# cat /dev/input/event01

Plain Text 复制代码

# mkdir -p test/tp 
# cd test/tp
# vi tp_test.c
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#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <linux/input.h>


static int event0_fd = -1;
struct input_event ev0;


static int handle_event0()
{
    int rd;


    rd = read(event0_fd, &ev0, sizeof(struct input_event));
    if(rd < sizeof(struct input_event)){
        return 0;
    }


    if(EV_ABS == ev0.type){
        if (ev0.code == ABS_X){
            printf("ABS_X:");
        }else if (ev0.code == ABS_Y){
            printf("ABS_Y:");
        }else if (ev0.code == ABS_PRESSURE){
            printf("ABS_PRESSURE:");
        }else{
            printf("UNKNOWEN:");
        }
        printf("value:%d\n", ev0.value);
    }
        
    return 1;
}


int main(void)
{
    int done = 1;


    event0_fd = open("/dev/input/event0", O_RDONLY);
    if(event0_fd <0) {
        printf("open input device error\n");
        return -1;
    }
    while (done){
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交叉编译tp_test.c：


将tp_test拷贝到板子上并运行：





        done = handle_event0();
    }


    if(event0_fd > 0){
        close(event0_fd);
        event0_fd = -1;
    }
    return 0;
}

4647
48
49
50
51
52
53
54

# arm-linux-gnueabihf-gcc tp_test.c -o tp_test1

Plain Text 复制代码

# ./tp_test1
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参考链接：https://wx.comake.online/doc/doc/SigmaStarDocs-SSD201-SIGMASTAR-

202305231818/platform/BSP/Takoyaki/gpio_zh.html#425


本次示例是使用GPIO6引脚如果不了解gpio的对应关系，我们可以直接查看gpio.h文件


DTS需要将这GPIO设置为GPIO_MODE（取消其他复用，就是默认为GPIO_MODE）：


GPIO配置


uboot 、kernel下使用GPIO


user space 使用 GPIO


DTS的配置


kernel/drivers/sstar/include/infinity2m/gpio.h1
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因为这个GPIO6可以复用为I2C，所以我们也需要把dts对应节点设置为disable：


kernel本身是默认加载了GPIO的驱动，因此不需要修改任何东西：


每次修改需要保存一下配置：

这样配置完成后，重新编译固件并升级kernel：


kernel的配置


vi kernel/arch/arm/boot/dts/infinity2m-ssc011a-s01a-padmux-rgb565-rmii-doub
lenet.dtsi

1

Plain Text 复制代码

vi kernel/arch/arm/boot/dts/infinity2m-ssc011a-s01a-padmux-rgb565-rmii-doub
lenet.dtsi

1

Plain Text 复制代码

# cp .config arch/arm/boot/dts/infinity2m-ssc011a-s01a-rgb565-rmii-doublene
t.dtsi  -f
# cd ..

1

2
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# cd ..
 # ./Release_to_customer.sh -f nand -p ssd202 -m 256
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我的验证方法是这样的，IO7（需另外配置）和IO6用导线联通。然后将IO7作为输入，IO6作为输出。如

果IO7的输入电平等于IO6的输出电平，说明GPIO功能是正常的：


 


从硬件的角度看，以太网接口电路，主要由MAC（Media Access Control）控制器和物理层接口和PHY

（Physical Layer，PHY）两大部分构成，如下图所示：


验证

ETH配置


以太网框架图

# echo 7 > /sys/class/gpio/export
# echo in > /sys/class/gpio/gpio7/direction
# echo 6 > /sys/class/gpio/export
# echo out > /sys/class/gpio/gpio6/direction
# echo 1 > /sys/class/gpio/gpio6/value
# cat /sys/class/gpio/gpio7/value
# echo 0 > /sys/class/gpio/gpio6/value
# cat /sys/class/gpio/gpio7/value
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我们从上图看出在MAC和PHY之间有一个RMII，这个是IEE-802.3定义的行业标准，是MAC与PHY之间

的接口，这其中包括了数据接口和MDIO管理接口，其中MDIO管理接口包括了MDC和MDIO两根信号

线，是用于PHY或者Switch芯片寄存器实现传输信息与状态控制。这其实是精简的MII接口，相对于MII节

省了一般的数据线，相应的，他的是时钟也均采用50MHZ时钟源。


RMII接口介绍
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MDIO和MDC对应的引脚为GPIO0和GPIO1，而且RMII其他数据线对应的是TTL16~23：故对应的引脚模

式如下：

DTS的配置
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故，我们在dts的配置如下：


vi kernel/arch/arm/boot/dts/infinity2m-ssc011a-s01a-padmux-rgb565-rmii-doub
lenet.dtsi

1

Plain Text 复制代码

<PAD_GPIO0           PINMUX_FOR_ETH1_MODE_4        MDRV_PUSE_NA >,
<PAD_GPIO1           PINMUX_FOR_ETH1_MODE_4        MDRV_PUSE_NA >,






<PAD_TTL16           PINMUX_FOR_GPIO_MODE       MDRV_PUSE_EMAC1_PHY_RESET
>,
<PAD_TTL17           PINMUX_FOR_ETH1_MODE_4        MDRV_PUSE_NA >,
<PAD_TTL18           PINMUX_FOR_ETH1_MODE_4        MDRV_PUSE_NA >,
<PAD_TTL19           PINMUX_FOR_ETH1_MODE_4        MDRV_PUSE_NA >,
<PAD_TTL20           PINMUX_FOR_ETH1_MODE_4        MDRV_PUSE_NA >,
<PAD_TTL21           PINMUX_FOR_ETH1_MODE_4        MDRV_PUSE_NA >,
<PAD_TTL22           PINMUX_FOR_ETH1_MODE_4        MDRV_PUSE_NA >,
<PAD_TTL23           PINMUX_FOR_ETH1_MODE_4        MDRV_PUSE_NA >,
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设置设备树对应网络节点，如果只需要开启某一个网口，直接把status属性设置为disabled：


这里一般都是默认配好了的。

在kernel目录下执行：


 在菜单里的：> Device Drivers > Network device support > PHY Device support and infrastructure 

下选中MDIO bus/PHY：





然后在菜单里的：> Device Drivers > SStar SoC platform drivers下选中EMAC


Kernel配置


# vi kernel/arch/arm/boot/dts/infinity2m-doublenet.dtsi1

Plain Text 复制代码

make menuconfig ARCH=arm1

Plain Text 复制代码
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即可，这些都是默认配置所以不需要自己配置。

保存下当前配置：

返回主目录重新编译：

这里WIFI是指由原厂配套的WIFI，型号为ssw01b，SDK中包含了该WIFI的驱动模块，位于

project/release/nvr/i2m/common/glibc/8.2.1/wifi/modules/ssw101b_wifi_HT40_usb.ko。





WIFI配置


驱动配置

project配置


# cp .config arch/arm/configs/infinity2m_spinand_ssc011a_s01a_minigui_doubl
enet_defconfig -f

1

Plain Text 复制代码

./Release_to_customer.sh -f nand -p ssd202 -m 2561

Plain Text 复制代码

# vi project/image/configs/i2m/rootfs.mk1

Plain Text 复制代码
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我们可以看出我们需要把interface_wlan调成enable，这个的配置在：


进入kernel目录下进行配置：


 Kernel配置


if [ $(interface_wlan) = "enable" ]; then \
        mkdir -p  $(miservice$(RESOUCE))/wifi ; \
        if [ $(FLASH_TYPE) = "spinand" ]; then \
                cp -rf $(LIB_DIR_PATH)/wifi/libs/ap/*   $(miservice$(RESOU
CE))/wifi ; \
                cp -rf $(LIB_DIR_PATH)/wifi/bin/ap/*   $(miservice$(RESOUC
E))/wifi ; \
        fi;     \
        find $(LIB_DIR_PATH)/wifi/bin/ -maxdepth 1 -type f -exec cp -P {} 
 $(miservice$(RESOUCE))/wifi \; ;\
        find $(LIB_DIR_PATH)/wifi/bin/ -maxdepth 1 -type l -exec cp -P {} 
 $(miservice$(RESOUCE))/wifi \; ;\
        find $(LIB_DIR_PATH)/wifi/libs/ -maxdepth 1 -type f -exec cp -P 
{}  $(miservice$(RESOUCE))/wifi \; ;\
        find $(LIB_DIR_PATH)/wifi/libs/ -maxdepth 1 -type l -exec cp -P 
{}  $(miservice$(RESOUCE))/wifi \; ;\
        cp -rf $(LIB_DIR_PATH)/wifi/modules/*   $(miservice$(RESOUCE))/wif
i ; \
        cp -rf $(LIB_DIR_PATH)/wifi/configs/*   $(miservice$(RESOUCE))/wif
i ; \
fi;
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# vi project/release/customer_tailor/nvr_i2m_display_glibc_tailor.mk1
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> Networking support > Networking options。


保存一下配置

根据原理图，我们的wifi使用的是usb1接口的，因此我们需要配置USB1（默认配好的，无需更改）：


DTS的配置


ARCH=arm make menuconfig1

Plain Text 复制代码

cp .config arch/arm/configs/infinity2m_spinand_ssc011a_s01a_minigui_doublen
et_defconfig

1

Plain Text 复制代码

vi kernel/arch/arm/boot/dts/infinity2m-doublenet.dtsi1

Plain Text 复制代码

vi kernel/arch/arm/boot/dts/infinity2m-ssc011a-s01a-padmux-rgb565-rmii-doub
lenet.dtsi



1

2

Plain Text 复制代码
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系统启动后，通过lsusb可以看到1b20:8888的设备，它便是wifi模块。


执行我们的脚本文件自动加载驱动，在我们的脚本文件里已经包含所需要的驱动以及sta和AP所需要的一

些套接字的路径：

加载驱动

/config/wifi/ssw01bInit.sh1

Plain Text 复制代码
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#!/bin/sh


/config/riu_w e 30 11
/config/riu_w 103c 8 00
sleep 0.01
/config/riu_w 103c 8 10


#mkdir -p /etc/
#touch /etc/hosts
touch /appconfigs/hosts
mkdir -p /tmp/wifi/run
chmod 777 /tmp/wifi/run
mkdir -p /appconfigs/misc/wifi/
mkdir -p /var/wifi/misc/
mkdir -p /var/lib/misc/
mkdir -p /var/run/hostapd/
insmod /config/wifi/ssw101b_wifi_HT40_usb.ko
mdev -s
wlan0=`ifconfig -a | grep wlan0`
trial=0
maxtrycnt=50
while [ -z "$wlan0" ] && [ $trial -le $maxtrycnt ]
do
    sleep 0.2
    #echo currect try $trial...
    trial=$(($trial + 1 ))
    wlan0=`ifconfig -a | grep wlan0`
done
if [ $trial -le $maxtrycnt ]; then
    echo try $trial times
fi
if [ $trial -gt $maxtrycnt ];then
    echo wlan0 not found
    exit -1
fi
echo LOG_WARN=OFF > /sys/module/ssw101b_wifi_usb/Sstarfs/Sstar_printk_mask
echo LOG_INIT=OFF > /sys/module/ssw101b_wifi_usb/Sstarfs/Sstar_printk_mask
echo LOG_EXIT=OFF > /sys/module/ssw101b_wifi_usb/Sstarfs/Sstar_printk_mask
echo LOG_SCAN=OFF > /sys/module/ssw101b_wifi_usb/Sstarfs/Sstar_printk_mask
echo LOG_LMAC=OFF > /sys/module/ssw101b_wifi_usb/Sstarfs/Sstar_printk_mask
echo LOG_PM=OFF > /sys/module/ssw101b_wifi_usb/Sstarfs/Sstar_printk_mask
exit 0
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驱动加载完后，我们就可以看到wlan0网卡：


wpa_supplicant是一个独立运行的守护进程，用来启动无线网络后台服务，在消息循环中处理WPA状态

机、控制命令、驱动事件、配置信息等。

常用命令参数如下：

前面我们已经加载了模块驱动，并且wlan0网卡存在，现在我们通过wpa_supplicant来连接WiFi热点，

我们修改wpa_supplicant.conf，填入wifi热点信息：


STA模式


-I <ifname>        // 网络接口名称


-c <conf>          // 配置文件名称


-C <ctrl_intf>       // 控制接口名称


-D<driver>     // 驱动类型名称


-p <driver_param>   // 驱动参数


-b <br_ifname>     // 桥接口名称


-d            // 增加调试信息
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我们可以去看看能否搜索到这个热点：

接着尝试去连接：

这里我们要以p2p0做为AP热点，且ip段为196.168.0.x，所以我们设置给ip地址，如果开启了服务ap服务

及dhcp服务再设置ip的话，会出现连接失败的现象：


AP模式


vi /appconfigs/wpa_supplicant.conf1

Plain Text 复制代码

ctrl_interface=/tmp/wifi/run/wpa_supplicant
update_config=1
network={
        scan_ssid=1
        ssid="TP-LINK_B87A"
        psk="12345678"


}
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/config/wifi/iwlist wlan0 scan1

Plain Text 复制代码

/config/wifi/wpa_supplicant -D nl80211 -i wlan0 -c /appconfigs/wpa_supplica
nt.conf -B &

1

Plain Text 复制代码
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当我们的WiFi模块作为AP热点时，需要配置一下热点信息：


这里使用p2p0作为AP热点，当然我们也可以用wifi模块作为我们的AP热点，这样就要设置

interface=wlan0，





开启DHCP服务，如果没有开启这项服务的话有可能会导致连接失败：


ifconfig p2p0 192.168.0.11

Plain Text 复制代码

# vi /config/wifi/hostapd.conf1

Plain Text 复制代码

vi /config/wifi/dnsmasq.conf1

Plain Text 复制代码
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 注意：这里的interface要根据那个模块作为AP热点来定，如果是wifi模块，则要设置为wlan0


开启热点

开启dhcp


现在设备可以正常连接热点了，但此时我想连接设备能够上网，即把板子当作一个路由器，把eth0当作WAN，

把wlan0当作LAN。首先需要确认eth0/eth1是可以上网的。


通过brctl桥接工具可以实现，此工具默认是没有安装的，和之前一样，从buildroot获取：


上网

/config/wifi/hostapd -B /config/wifi/hostapd.conf1

Plain Text 复制代码

# /config/wifi/dnsmasq -i wlan0 -C /config/wifi/dnsmasq.conf1

Plain Text 复制代码

cd buildroot-2020.05/
ARCH=arm make menuconfig

1
2

Plain Text 复制代码深
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重新编译固件

更新固件后，前面的加载驱动、hostapd服务和dnsmasq服务需要重新执行，然后执行以下命令建立桥接：


RTC采用标准的LINUX框架，能够使用统一的接口来操作RTC。


所以我们进入内核菜单，开启一下RTC相关驱动：


Device Drivers 

> SStar SoC platform drivers


RTC配置


kernel配置


cp .config ./configs/ssd20x_defconfig -f
make BR2_JLEVEL=4
cd ../project/image/rootfs
rm rootfs/* -rf
cp ../../../buildroot-2020.05/output/images/rootfs.tar ./ -f
tar -xvf rootfs.tar -C ./rootfs/
tar -cvf rootfs.tar.gz ./rootfs
cd ../../../

1
2
3
4
5
6
7
8

Plain Text 复制代码

./Release_to_customer.sh -f nand -p ssd202 -m 2561

Plain Text 复制代码

brctl addbr br0
brctl addif br0 wlan0
brctl addif br0 eth0
ifconfig br0 up

1
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4

Plain Text 复制代码

make menuconfig ARCH=arm1

Plain Text 复制代码深
圳
触
觉
智
能
科
技
有
限
公
司
 

ht
tp
:/
/w
ww
.i
nd
us
ti
o.
cn



74

保存一下配置并且重新编译：

烧录到开发板，我们可以看到/dev/rtc节点，证明我们可以正常使用RTC。


分析原理图，我们使用的是UART1_TXD和UART1_RXD引脚


RTC操作方法


DTS配置


cp .config arch/arm/configs/infinity2m_spinand_ssc011a_s01a_minigui_doublen
et_defconfig
cd ..
./Release_to_customer.sh -f nand -p ssd202 -m 256

1

2
3

Plain Text 复制代码

# date -s "2020-11-12 10:10:10"   //设置系统时间
# hwclock -w                      //将系统时间更新到 RTC
# hwclock -r                        //读取 RTC 时间
# hwclock -s                      //将 RTC 时间同步系统时间

1
2
3
4

Plain Text 复制代码
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音频（耳机）配置

1. LineOut


DTS配置


vi arch/arm/boot/dts/infinity2m-ssc011a-s01a-padmux-rgb565-rmii-doublenet.d
tsi

1

Plain Text 复制代码

vi arch/arm/boot/dts/infinity2m-ssc011a-s01a-padmux-rgb565-rmii-doublenet.d
tsi

1

Plain Text 复制代码

vi kernel/arch/arm/boot/dts/infinity2m-doublenet.dtsi1

Bash 复制代码
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这里的amp-gpio，我们是需要开启的，因为在其他接口用到了PAD_FUART_RX，所以在使用LineOut之

前是关闭的。这个的作用是为amp_gpio的左右声道控制pin：





由于原厂没有提供驱动源码，只提供ko模块，模块在：


这个模块是linux内核驱动模块，它与音频相关，提供了音频设备交互，例如音频数据的输入，输出和处

理，默认是直接编进内核的。

sound {
    compatible = "sstar,audio";
//  reg = <0x1F000000 0x1000000>;
    interrupts=<GIC_SPI INT_IRQ_BACH IRQ_TYPE_LEVEL_HIGH>;
    playback-volume-level=<64>;    //0~94
    capture-volume-level=<64>;
   // micin-pregain-level=<1>;    //0~3
    micin-pregain-level=<0>;    //0~3
    micin-gain-level=<3>;    //0~7
    linein-gain-level=<2>;  //0~7
    amp-gpio = <PAD_FUART_RX 1>;//控制声道pin
    clocks = <&CLK_upll_384m>;
   // playback-dma-buffer=<98304>; //512(ms)*48(kHz)*2(ch)*2(16bits)
   // capture-dma-buffer=<122880>; //640(ms)*48(kHz)*2(ch)*2(16bits)
    digmic-padmux = <2>;
    i2s-padmux = <2>;//i2s mode
    keep-i2s-clk = <0>;
    status = "ok";
};
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Plain Text 复制代码

vi kernel/arch/arm/boot/dts/infinity2m-ssc011a-s01a-padmux-rgb565-rmii-doub
lenet.dtsi

1

Bash 复制代码

project/release/nvr/i2m/common/glibc/8.2.1/modules/4.9.84/1

Bash 复制代码深
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我们音频播放程序audio_all_test_case验证lLineOut功能：





我们可以看到，audio_all_test_cas默认是编译的，因此直接make即可：


编译完成之后，将在../out/demo/app/下产生可执行程序：


我们把prog_audio_all_test_case放到project/image/rootfs_add_files/


执行程序有了，缺少一个音频文件，这里注意，需要的是格式为wav的，我们把它放到


重新编译系统

验证

cd sdk/verify/mi_demo/geonosis/
vi Makefile

1
2

Bash 复制代码

make1

Bash 复制代码

cp prog_audio_all_test_case ../../../../../../project/image/rootfs_add_file
s/usr/bin/

1

Bash 复制代码

mkdir project/image/rootfs_add_files/media
cp pizzicato.wav project/image/rootfs_add_files/media

1
2

Bash 复制代码
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在开发板内执行命令

1. LineOut支持左右声道，但是只有一路的dev，意思就是说可以连接到左右声道输出，但是只有一个

音频通道可供使用，即只能输出单声道的音频播放，如果需要播放立体左右声道，需要音频文件本

身就左右声道组合好通过STEREO MODE播放(不支持单独喂数据)


我们把测试demo和测试音频文件保存在IDO_SSD20X/开发板/IDO-SBC2D07/开发文档/test/lineout/

下。

至此，LineOut调试完成。


补充

./Release_to_customer.sh -f nand -p ssd202 -m 2561

Plain Text 复制代码

prog_audio_all_test_case -t 10 -O -i /media/pizzicato.wav -D 0 -V 31

Plain Text 复制代码
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DMIC接口也称双/立体声数字麦克风接口。 这种接口允许两个麦克风共享一个公共的时钟与数据线。每

个麦克风被配置为在时钟信号的不同沿产生各自的输出。这样两个麦克风的输出就能保持相互同步，设

计师就能确保来自每个通道的数据被同时捕获到。

首先根据我们的硬件确定使用的是那组的pin，使用SSD201HWChecklistV6.xlsx 可以看出是：


配置是跟上面LineOut的没啥关系的，这里主要注意的是i2s-padmux，这里对应的是mode 2，上面也有

说明。

2. DMIC


DTS的配置


sound {
    compatible = "sstar,audio";
//  reg = <0x1F000000 0x1000000>;
    interrupts=<GIC_SPI INT_IRQ_BACH IRQ_TYPE_LEVEL_HIGH>;
    playback-volume-level=<64>;    //0~94
    capture-volume-level=<64>;
   // micin-pregain-level=<1>;    //0~3
    micin-pregain-level=<0>;    //0~3
    micin-gain-level=<3>;    //0~7
    linein-gain-level=<2>;  //0~7
    amp-gpio = <PAD_FUART_RX 1>;//控制声道pin
    clocks = <&CLK_upll_384m>;
   // playback-dma-buffer=<98304>; //512(ms)*48(kHz)*2(ch)*2(16bits)
   // capture-dma-buffer=<122880>; //640(ms)*48(kHz)*2(ch)*2(16bits)
    digmic-padmux = <2>;
    i2s-padmux = <2>;//DMIC mode
    keep-i2s-clk = <0>;
    status = "ok";
};
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Plain Text 复制代码
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我们修改对应的padmux dts，设置引脚为DMIC_MODE：





当然，kernel 也需要加载对应的驱动：


保存一下配置：

接下来，我们编译下固件，然后烧进开发板，测试一下：

这样将在/tmp产生我们的录音文件：


AMIC功能是默认加载，不需要修改 DTS 配置。和 DMIC 一样，使用 audio_all_test_case 程序来测

试：

kernel


3. AMIC


# cd kernel
# ARCH=arm make menuconfig

1
2

Plain Text 复制代码

cp .config arch/arm/configs/infinity2m_spinand_ssc011a_s01a_minigui_doublen
et_defconfig

1

Plain Text 复制代码

prog_audio_all_test_case -t 20 -I -o /tmp -d 1 -m 0 -c 2 -s 480001

Plain Text 复制代码
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这里跟DMIC唯一不同的是，-d 0，在DIMC中，是-d 1


 将会在/tmp/目录下生成 Chn0_Amic_48K_16bit_MONO.wav 和 

Chn1_Amic_48K_16bit_MONO.wav。如果有LineOut接口，可以直接播放该录音文件，判断是否录音成

功。

首先根据我们的硬件确定使用的是那组的pin，使用SSD201HWChecklistV6.xlsx 可以看出是：


然后修改dts的sound节点i2s-padmux 的值（mode的值）：


4. I2S


DTS的配置


prog_audio_all_test_case -t 20 -I -o /tmp -d 0 -m 0 -c 2 -s 480001

Plain Text 复制代码
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接着还需要将该组 GPIO 配置为 I2S 模式：


这样配置后，和 AMIC/DMIC 一样，使用 audio_all_test_case 程序来测试：


将会在/tmp/目录下生成Chn0_I2SRx_48K_16bit_MONO.wav和Chn1_I2SRx_48K_16bit_MONO.wav。

如果有LineOut接口，可以直接播放该录音文件，判断是否录音成功。


Watchdog配置


开启驱动

sound {
    compatible = "sstar,audio";
//  reg = <0x1F000000 0x1000000>;
    interrupts=<GIC_SPI INT_IRQ_BACH IRQ_TYPE_LEVEL_HIGH>;
    playback-volume-level=<64>;    //0~94
    capture-volume-level=<64>;
   // micin-pregain-level=<1>;    //0~3
    micin-pregain-level=<0>;    //0~3
    micin-gain-level=<3>;    //0~7
    linein-gain-level=<2>;  //0~7
    amp-gpio = <PAD_FUART_RX 1>;//控制声道pin
    clocks = <&CLK_upll_384m>;
   // playback-dma-buffer=<98304>; //512(ms)*48(kHz)*2(ch)*2(16bits)
   // capture-dma-buffer=<122880>; //640(ms)*48(kHz)*2(ch)*2(16bits)
    digmic-padmux = <2>;
    i2s-padmux = <1>;//i2s mode
    keep-i2s-clk = <0>;
    status = "ok";
};
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Plain Text 复制代码

<PAD_GPIO0          PINMUX_FOR_I2s_MODE_1      MDRV_PUSE_I2s_WCK >,
<PAD_GPIO1          PINMUX_FOR_I2s_MODE_1      MDRV_PUSE_I2s_BCK >,
<PAD_GPIO2          PINMUX_FOR_I2s_MODE_1      MDRV_PUSE_I2s_SDI >,
<PAD_GPIO3          PINMUX_FOR_I2s_MODE_1      MDRV_PUSE_I2s_SDO >,

1
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Plain Text 复制代码

prog_audio_all_test_case -t 20 -I -o /tmp -d 2 -m 0 -c 2 -s 481

Plain Text 复制代码
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 >  Device Drivers 


>  [*]SStar SoC platform drivers


>  <*>watchdog driver


保存下配置

编译固件烧录开发板

如果能查找到节点/dev/watchdog就说明加载成功


使用标准的watchdog命令即可对watchdog进行测试。


以下测试没有在规定时间内喂狗，系统重启功能：

以下测试在规定时间内喂狗，系统正常运行：

测试

cp .config arch/arm/configs/infinity2m_spinand_ssc011a_s01a_minigui_doublen
et_defconfig

1

Plain Text 复制代码

# watchdog -t 10 /dev/watchdog     //表示每10s喂狗一次
# watchdog -T 5  /dev/watchdog     //表示超过5s没有喂狗则系统重启

1
2

Plain Text 复制代码

# watchdog -t 10 -T 5 /dev/watchdog  //5s后系统重启1

Plain Text 复制代码

# watchdog -t 10 -T 60 /dev/watchdog1

Plain Text 复制代码
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这个服务设定每3秒喂狗一次，而默认是60秒没有喂狗系统才重启，因此系统正常运行情况下，看门狗不

会复位。

添加 watchdog 服务


#!/bin/sh
#Start watchdog
case"$1"in
    start)
        echo "Startingwatchdog..."
        watchdog -t 3 /dev/watchdog
        ;;
    stop)
        ;;
    restart|reload)
        ;;
    *)
        echo "Usage:$0{start|stop|restart}"
        exit 1 
    esac
        exit $?
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Shell 复制代码
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